Finite Expansion of an Infinitesimal Void in Elastic-Plastic Materials under Equitriaxial Stress

S. Biwa
{"title":"Finite Expansion of an Infinitesimal Void in Elastic-Plastic Materials under Equitriaxial Stress","authors":"S. Biwa","doi":"10.1299/JSMEA1993.40.1_23","DOIUrl":null,"url":null,"abstract":"Sudden growth of an infinitesimal void to a finite size under equitriaxial tension is studied for elastic-plastic materials via a bifurcation approach. The analysis employs the Prandtl-Reuss model with finite deformation taken into account, for both strainhardening and perfectly plastic solids. Expressions for critical stress and strain levels for finite void growth, namely, cavitation limits, are obtained in the form of integrals involving material parameters and hardening characteristics. Numerical results for the critical values and post-cavitation behavior are demonstrated for power-law hardening elastic plastic materials, and the influence of hardening exponents as well as elastic compliance is discussed in detail.","PeriodicalId":143127,"journal":{"name":"JSME international journal. Series A, mechanics and material engineering","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JSME international journal. Series A, mechanics and material engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA1993.40.1_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Sudden growth of an infinitesimal void to a finite size under equitriaxial tension is studied for elastic-plastic materials via a bifurcation approach. The analysis employs the Prandtl-Reuss model with finite deformation taken into account, for both strainhardening and perfectly plastic solids. Expressions for critical stress and strain levels for finite void growth, namely, cavitation limits, are obtained in the form of integrals involving material parameters and hardening characteristics. Numerical results for the critical values and post-cavitation behavior are demonstrated for power-law hardening elastic plastic materials, and the influence of hardening exponents as well as elastic compliance is discussed in detail.
等轴应力作用下弹塑性材料中无限小孔洞的有限膨胀
采用分岔方法研究了弹塑性材料在等轴拉伸作用下,无限小孔洞突然成长为有限尺寸的问题。对于应变硬化和完全塑性固体,分析采用考虑有限变形的Prandtl-Reuss模型。有限空洞生长的临界应力和应变水平的表达式,即空化极限,以涉及材料参数和硬化特性的积分形式得到。给出了幂律硬化弹塑性材料的临界值和后空化行为的数值结果,并详细讨论了硬化指数和弹性柔度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信