A wide neighbourhood predictor–corrector infeasible-interior-point algorithm for symmetric cone programming

M. S. Shahraki, H. Mansouri, A. Delavarkhalafi
{"title":"A wide neighbourhood predictor–corrector infeasible-interior-point algorithm for symmetric cone programming","authors":"M. S. Shahraki, H. Mansouri, A. Delavarkhalafi","doi":"10.1080/10556788.2022.2060970","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new predictor–corrector infeasible-interior-point algorithm for symmetric cone programming. Each iterate always follows the usual wide neighbourhood , it does not necessarily stay within it but must stay within the wider neighbourhood . We prove that, besides the predictor step, each corrector step also reduces the duality gap by a rate of , where r is the rank of the associated Euclidean Jordan algebra. Moreover, we improve the theoretical complexity bound of an infeasible-interior-point method. Some numerical results are provided as well.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2060970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a new predictor–corrector infeasible-interior-point algorithm for symmetric cone programming. Each iterate always follows the usual wide neighbourhood , it does not necessarily stay within it but must stay within the wider neighbourhood . We prove that, besides the predictor step, each corrector step also reduces the duality gap by a rate of , where r is the rank of the associated Euclidean Jordan algebra. Moreover, we improve the theoretical complexity bound of an infeasible-interior-point method. Some numerical results are provided as well.
对称锥规划的宽邻域预测校正不可行内点算法
针对对称锥规划问题,提出了一种新的预测-校正不可行内点算法。每次迭代总是遵循通常的宽邻域,它不一定停留在它内,但必须停留在更宽的邻域内。我们证明,除了预测步骤之外,每个校正步骤也以速率减小对偶间隙,其中r是相关欧几里德约当代数的秩。此外,我们改进了一种不可行的内点法的理论复杂度界。并给出了一些数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信