Mixture model based color clustering for psoriatic plaque segmentation

A. Pal, A. Roy, K. Sen, R. Chatterjee, Utpal Garain, Swapan Senapati
{"title":"Mixture model based color clustering for psoriatic plaque segmentation","authors":"A. Pal, A. Roy, K. Sen, R. Chatterjee, Utpal Garain, Swapan Senapati","doi":"10.1109/ACPR.2015.7486529","DOIUrl":null,"url":null,"abstract":"This paper presents a mixture model based color clustering and then applies this technique for psoriatic plaque segmentation in skin images. For clustering image pixels, two mostly relevant colorspaces namely, CIE Luv(cubic) and CIE Lch(equivalent cylindrical) are considered. Gaussian Mixture Model(GMM) is used for clustering in Luv space. However, Lch space being a circular-linear space does not support the use of GMM. Hence, clustering in Lch makes use of a novel mixture model known as Semi-Wrapped Gaussian Mixture Model(SWGMM). The performance of these clustering methods is evaluated for psoriatic plaque segmentation and results are compared with those obtained by the commonly used Fuzzy C-Means (FCM) clustering algorithm. The comparative study shows that the clustering in Lch using SWGMM outperforms the other approaches. For localizing the plaques, we consider von Mises distribution to find a suitable confidence interval and thereby defining skin and non-skin models. The UCI Skin Segmentation dataset is used for this purpose. This localization approach achieves an average accuracy 79.53%. A real clinical dataset of Psoriasis images is used in this experiment.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"65 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a mixture model based color clustering and then applies this technique for psoriatic plaque segmentation in skin images. For clustering image pixels, two mostly relevant colorspaces namely, CIE Luv(cubic) and CIE Lch(equivalent cylindrical) are considered. Gaussian Mixture Model(GMM) is used for clustering in Luv space. However, Lch space being a circular-linear space does not support the use of GMM. Hence, clustering in Lch makes use of a novel mixture model known as Semi-Wrapped Gaussian Mixture Model(SWGMM). The performance of these clustering methods is evaluated for psoriatic plaque segmentation and results are compared with those obtained by the commonly used Fuzzy C-Means (FCM) clustering algorithm. The comparative study shows that the clustering in Lch using SWGMM outperforms the other approaches. For localizing the plaques, we consider von Mises distribution to find a suitable confidence interval and thereby defining skin and non-skin models. The UCI Skin Segmentation dataset is used for this purpose. This localization approach achieves an average accuracy 79.53%. A real clinical dataset of Psoriasis images is used in this experiment.
基于混合模型的银屑病斑块颜色聚类分割
提出了一种基于混合模型的颜色聚类方法,并将其应用于皮肤图像中银屑病斑块的分割。对于聚类图像像素,考虑了两个最相关的颜色空间,即CIE Luv(立方)和CIE Lch(等效圆柱形)。采用高斯混合模型(Gaussian Mixture Model, GMM)对Luv空间进行聚类。然而,Lch空间是一个圆-线性空间,不支持使用GMM。因此,Lch中的聚类使用了一种称为半包裹高斯混合模型(SWGMM)的新型混合模型。评估了这些聚类方法在银屑病斑块分割中的性能,并将结果与常用的模糊c均值聚类算法进行了比较。对比研究表明,SWGMM在Lch中的聚类效果优于其他方法。为了定位斑块,我们考虑von Mises分布来找到合适的置信区间,从而定义皮肤和非皮肤模型。UCI皮肤分割数据集用于此目的。该定位方法的平均准确率为79.53%。本实验使用的是真实的牛皮癣临床图像数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信