MATHEMATICAL MODELING OF A THERMOELECTRIC GENERATOR UNICOUPLE

Sarah E. Wielgosz, Shane P. Riley, Kevin Yu, Michael J. Durka, B. Nesmith, F. Drymiotis, J. Fleurial, Matthew Barry
{"title":"MATHEMATICAL MODELING OF A THERMOELECTRIC GENERATOR UNICOUPLE","authors":"Sarah E. Wielgosz, Shane P. Riley, Kevin Yu, Michael J. Durka, B. Nesmith, F. Drymiotis, J. Fleurial, Matthew Barry","doi":"10.1615/tfec2022.aae.040927","DOIUrl":null,"url":null,"abstract":"To ascertain the simultaneous thermal and electrical performance of a thermoelectric (TE) unicouple with interconnectors, a thermal-electric coupled iterative mathematical model is introduced. The non-linear constitutive equations describing TE phenomena within the unicouple are linked to a thermal resistance network describing the interconnectors’ behavior. Thereupon, the thermal resistance of the interconnectors, and Joule heat generated within, are considered. Temperature dependent material properties are handled by integral-averaging techniques and an iterative solution methodology. Model form uncertainty is quantified by evaluating four unique analytic models. The first, the Implicit Thomson Model (ITM), considers the Thomson effect via integral averaging of the Seebeck coefficient. The second, the Explicit Thomson Model (ETM), decouples the Thomson effect from the Peltier effect; Thomson heat is explicitly solved using the Thomson coefficient. The third, the zT model, uses the figure of merit to describe the optimum efficiency-maximizing load resistance, and quantify device efficiency under maximum power scenarios. The last, the Differential Equation Model, does not assume distributions of Joule and Thomson heats to the cold- and hot-side interfaces as do the ITM, ETM and zT model. The predictive ability of each analytic model used within the unicouple-level model is compared to high-fidelity numeric results obtained from a three-dimensional, thermal-electric coupled model implemented in ANSYS CFX. Considering a range of hot-side unicouple temperatures, each analytic model exhibits agreement with one another, and with the numeric model. With increasing load resistance values, model form uncertainty and disagreement between analytic and numeric predictions decreases to a couple of percent at optimum operating points.","PeriodicalId":330469,"journal":{"name":"Proceeding of 7th Thermal and Fluids Engineering Conference (TFEC)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of 7th Thermal and Fluids Engineering Conference (TFEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/tfec2022.aae.040927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To ascertain the simultaneous thermal and electrical performance of a thermoelectric (TE) unicouple with interconnectors, a thermal-electric coupled iterative mathematical model is introduced. The non-linear constitutive equations describing TE phenomena within the unicouple are linked to a thermal resistance network describing the interconnectors’ behavior. Thereupon, the thermal resistance of the interconnectors, and Joule heat generated within, are considered. Temperature dependent material properties are handled by integral-averaging techniques and an iterative solution methodology. Model form uncertainty is quantified by evaluating four unique analytic models. The first, the Implicit Thomson Model (ITM), considers the Thomson effect via integral averaging of the Seebeck coefficient. The second, the Explicit Thomson Model (ETM), decouples the Thomson effect from the Peltier effect; Thomson heat is explicitly solved using the Thomson coefficient. The third, the zT model, uses the figure of merit to describe the optimum efficiency-maximizing load resistance, and quantify device efficiency under maximum power scenarios. The last, the Differential Equation Model, does not assume distributions of Joule and Thomson heats to the cold- and hot-side interfaces as do the ITM, ETM and zT model. The predictive ability of each analytic model used within the unicouple-level model is compared to high-fidelity numeric results obtained from a three-dimensional, thermal-electric coupled model implemented in ANSYS CFX. Considering a range of hot-side unicouple temperatures, each analytic model exhibits agreement with one another, and with the numeric model. With increasing load resistance values, model form uncertainty and disagreement between analytic and numeric predictions decreases to a couple of percent at optimum operating points.
热电发电机单电偶的数学建模
为了确定带连接件的热电单偶的热电同时性能,引入了热电耦合迭代数学模型。描述单偶内TE现象的非线性本构方程与描述互连器行为的热阻网络相关联。因此,考虑了互连器的热阻和内部产生的焦耳热。温度相关的材料特性由积分平均技术和迭代求解方法处理。通过评价四种独特的分析模型,量化了模型形式的不确定性。第一种,隐式汤姆森模型(ITM),通过塞贝克系数的积分平均来考虑汤姆森效应。第二种是显式汤姆森模型(Explicit Thomson Model, ETM),它将汤姆森效应与珀尔蒂埃效应解耦;用汤姆逊系数显式求解汤姆逊热。第三种是zT模型,使用优值图来描述最优效率-最大负载电阻,并量化最大功率场景下的器件效率。最后,微分方程模型不像ITM、ETM和zT模型那样,假设焦耳和汤姆逊热在冷侧和热侧界面的分布。将单偶级模型中使用的每个分析模型的预测能力与ANSYS CFX中实现的三维热电耦合模型获得的高保真数值结果进行了比较。考虑热侧单偶温度范围,各分析模型相互吻合,并与数值模型吻合。随着负载电阻值的增加,模型形式的不确定性和解析预测与数值预测之间的分歧在最佳工作点减少到几个百分点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信