A RNN-LSTM-Based Predictive Modelling Framework for Stock Market Prediction Using Technical Indicators

S. Mittal, A. Chauhan
{"title":"A RNN-LSTM-Based Predictive Modelling Framework for Stock Market Prediction Using Technical Indicators","authors":"S. Mittal, A. Chauhan","doi":"10.4018/ijrsda.288521","DOIUrl":null,"url":null,"abstract":"The successful prediction of the stocks’ future price would produce substantial profit to the investor. In this paper, we propose a framework with the help of various technical indicators of the stock market to predict the future prices of the stock using Recurrent Neural Network based Long Short-Term Memory (LSTM) algorithm. The historical transactional data set is amalgamated with the technical indicators to create a more effective input dataset. The historical data is taken from 2010-2019 ten years in total. The dataset is divided into 80% training set and 20% test set. The experiment is carried out in two phases first without the technical indicators and after adding technical indicators. In the experimental setup, it has been observed the LSTM with technical indicators have significantly reduced the error value by 2.42% and improved the overall performance of the system as compared to other machine learning frameworks that are not accounting the effect of technical indicators.","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijrsda.288521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The successful prediction of the stocks’ future price would produce substantial profit to the investor. In this paper, we propose a framework with the help of various technical indicators of the stock market to predict the future prices of the stock using Recurrent Neural Network based Long Short-Term Memory (LSTM) algorithm. The historical transactional data set is amalgamated with the technical indicators to create a more effective input dataset. The historical data is taken from 2010-2019 ten years in total. The dataset is divided into 80% training set and 20% test set. The experiment is carried out in two phases first without the technical indicators and after adding technical indicators. In the experimental setup, it has been observed the LSTM with technical indicators have significantly reduced the error value by 2.42% and improved the overall performance of the system as compared to other machine learning frameworks that are not accounting the effect of technical indicators.
基于rnn - lstm的技术指标股票市场预测建模框架
成功预测股票的未来价格会给投资者带来可观的利润。在本文中,我们提出了一个框架,借助股票市场的各种技术指标,利用基于递归神经网络的长短期记忆(LSTM)算法预测股票的未来价格。历史事务数据集与技术指标相结合,以创建更有效的输入数据集。历史数据取自2010-2019年共10年。数据集分为80%的训练集和20%的测试集。实验分不加技术指标和加技术指标两个阶段进行。在实验设置中,我们观察到,与其他不考虑技术指标影响的机器学习框架相比,带有技术指标的LSTM显著降低了2.42%的误差值,提高了系统的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信