N. Cynthia, Nyarko Peter Kwesi, Ampofi Isaac, Asante Emmanuel
{"title":"Modelling Transmission of Buruli Ulcer in the Central Region of Ghana","authors":"N. Cynthia, Nyarko Peter Kwesi, Ampofi Isaac, Asante Emmanuel","doi":"10.11648/J.MMA.20200504.13","DOIUrl":null,"url":null,"abstract":"The pathogen of Buruli Ulcer (BU) is known to be Mycobacterium Ulcerans whose mode of transmission is entirely not known, although the disease is recognised to be associated with contaminated water. The hypothesised transmission involves humans being bitten by the water bugs (vector) that prey on mollusks, snails and young fishes. The hypothesised transmission also involves humans feeding on an infected fish or frog. This study seeks to contribute to the dynamics and analyses of the transmission mechanism of Buruli Ulcer in communities along Offin River in the Central Region of Ghana. The model equilibria were determined and conditions for the equilibria were also established. The basic reproduction number, was derived using the Next Generation approach and its estimated value was 1.20771. The result reveals that, is greater than 1, indicating a horizontal spread of the infection across the population. The transmission dynamics of Buruli Ulcer model of the Susceptible, Infected and Recovered (SIR) type also show that the disease will continue to spread at the study areas as long as the reservoir for Mycobacterium Ulcerans continue to sustain enough infected water bugs and infected fish or infected frog to contain the disease. The study further concludes that, the rate of spread of Buruli Ulcer in the affected communities continue to be high due to its mode of transmission. This study suggest that adequate control measures including mass education and prompt treatment to curb the spread should be emphasized.","PeriodicalId":340874,"journal":{"name":"Mathematical Modelling and Applications","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.MMA.20200504.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The pathogen of Buruli Ulcer (BU) is known to be Mycobacterium Ulcerans whose mode of transmission is entirely not known, although the disease is recognised to be associated with contaminated water. The hypothesised transmission involves humans being bitten by the water bugs (vector) that prey on mollusks, snails and young fishes. The hypothesised transmission also involves humans feeding on an infected fish or frog. This study seeks to contribute to the dynamics and analyses of the transmission mechanism of Buruli Ulcer in communities along Offin River in the Central Region of Ghana. The model equilibria were determined and conditions for the equilibria were also established. The basic reproduction number, was derived using the Next Generation approach and its estimated value was 1.20771. The result reveals that, is greater than 1, indicating a horizontal spread of the infection across the population. The transmission dynamics of Buruli Ulcer model of the Susceptible, Infected and Recovered (SIR) type also show that the disease will continue to spread at the study areas as long as the reservoir for Mycobacterium Ulcerans continue to sustain enough infected water bugs and infected fish or infected frog to contain the disease. The study further concludes that, the rate of spread of Buruli Ulcer in the affected communities continue to be high due to its mode of transmission. This study suggest that adequate control measures including mass education and prompt treatment to curb the spread should be emphasized.