Visual Servoing Using Virtual Space for Both Learning and Task Execution

Tomoki Kawagoshi, S. Arnold, Kimitoshi Yamazaki
{"title":"Visual Servoing Using Virtual Space for Both Learning and Task Execution","authors":"Tomoki Kawagoshi, S. Arnold, Kimitoshi Yamazaki","doi":"10.1109/IEEECONF49454.2021.9382691","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a framework for per-forming an object picking task using visual servoing. As a robotic manipulator approaches the object to be grasped, a convolutional neural network (CNN) is used to generate motions to utilize visual servoing. However, to obtain an appropriate CNN, it is necessary to prepare a large amount of training data. Therefore, we propose a method that utilizes a virtual environment to reduce the load. Moreover, while performing the actual object picking task, sensor data acquisition and motion generation are performed using the virtual environment. This renders approaching the object possible even when the texture changes in the actual environment where the robot moves. An object grasping experiment was conducted on a rectangular box or a cylindrical object, and the performance of the proposed framework was verified.","PeriodicalId":395378,"journal":{"name":"2021 IEEE/SICE International Symposium on System Integration (SII)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/SICE International Symposium on System Integration (SII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF49454.2021.9382691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we describe a framework for per-forming an object picking task using visual servoing. As a robotic manipulator approaches the object to be grasped, a convolutional neural network (CNN) is used to generate motions to utilize visual servoing. However, to obtain an appropriate CNN, it is necessary to prepare a large amount of training data. Therefore, we propose a method that utilizes a virtual environment to reduce the load. Moreover, while performing the actual object picking task, sensor data acquisition and motion generation are performed using the virtual environment. This renders approaching the object possible even when the texture changes in the actual environment where the robot moves. An object grasping experiment was conducted on a rectangular box or a cylindrical object, and the performance of the proposed framework was verified.
基于虚拟空间的学习与任务执行视觉伺服
在本文中,我们描述了一个使用视觉伺服执行对象拾取任务的框架。当机器人靠近被抓取物体时,利用卷积神经网络(CNN)生成运动,利用视觉伺服。然而,为了得到一个合适的CNN,需要准备大量的训练数据。因此,我们提出了一种利用虚拟环境来减少负载的方法。此外,在执行实际物体拾取任务的同时,利用虚拟环境进行传感器数据采集和运动生成。这使得接近物体成为可能,即使在机器人移动的实际环境中纹理发生变化。在矩形框和圆柱形物体上进行了物体抓取实验,验证了该框架的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信