Parameterized Complexity of Elimination Distance to First-Order Logic Properties

F. Fomin, P. Golovach, D. Thilikos
{"title":"Parameterized Complexity of Elimination Distance to First-Order Logic Properties","authors":"F. Fomin, P. Golovach, D. Thilikos","doi":"10.1109/LICS52264.2021.9470540","DOIUrl":null,"url":null,"abstract":"The elimination distance to some target graph property ${\\mathcal{P}}$ is a general graph modification parameter introduced by Bulian and Dawar. We initiate the study of elimination distances to graph properties expressible in first-order logic. We delimit the problem’s fixed-parameter tractability by identifying sufficient and necessary conditions on the structure of prefixes of first-order logic formulas. Our main result is the following meta-theorem: For every graph property ${\\mathcal{P}}$ expressible by a first order-logic formula φ ∈ Σ3, that is, of the form\\begin{equation*}\\varphi = \\exists {x_1}\\exists {x_2} \\cdots \\exists {x_r}\\forall {y_1}\\forall {y_2} \\cdots \\forall {y_s}\\quad \\exists {z_1}\\exists {z_2} \\cdots \\exists {z_t}\\,\\psi ,\\end{equation*}where ψ is a quantifier-free first-order formula, checking whether the elimination distance of a graph to ${\\mathcal{P}}$ does not exceed k, is fixed-parameter tractable parameterized by k. Properties of graphs expressible by formulas from Σ3 include being of bounded degree, excluding a forbidden subgraph, or containing a bounded dominating set. We complement this theorem by showing that such a general statement does not hold for formulas with even slightly more expressive prefix structure: There are formulas φ ∈ Π3, for which computing elimination distance is W[2]-hard.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The elimination distance to some target graph property ${\mathcal{P}}$ is a general graph modification parameter introduced by Bulian and Dawar. We initiate the study of elimination distances to graph properties expressible in first-order logic. We delimit the problem’s fixed-parameter tractability by identifying sufficient and necessary conditions on the structure of prefixes of first-order logic formulas. Our main result is the following meta-theorem: For every graph property ${\mathcal{P}}$ expressible by a first order-logic formula φ ∈ Σ3, that is, of the form\begin{equation*}\varphi = \exists {x_1}\exists {x_2} \cdots \exists {x_r}\forall {y_1}\forall {y_2} \cdots \forall {y_s}\quad \exists {z_1}\exists {z_2} \cdots \exists {z_t}\,\psi ,\end{equation*}where ψ is a quantifier-free first-order formula, checking whether the elimination distance of a graph to ${\mathcal{P}}$ does not exceed k, is fixed-parameter tractable parameterized by k. Properties of graphs expressible by formulas from Σ3 include being of bounded degree, excluding a forbidden subgraph, or containing a bounded dominating set. We complement this theorem by showing that such a general statement does not hold for formulas with even slightly more expressive prefix structure: There are formulas φ ∈ Π3, for which computing elimination distance is W[2]-hard.
一阶逻辑性质消去距离的参数化复杂度
到某个目标图属性的消除距离${\mathcal{P}}$是Bulian和Dawar引入的一个通用的图修改参数。我们开始了一阶逻辑可表示的图属性的消去距离的研究。通过确定一阶逻辑公式前缀结构的充要条件,确定了问题的定参数可追溯性。我们的主要结果是以下元定理:对于每一个可由一阶逻辑公式φ∈Σ3表示的图属性${\mathcal{P}}$,即形式为\begin{equation*}\varphi = \exists {x_1}\exists {x_2} \cdots \exists {x_r}\forall {y_1}\forall {y_2} \cdots \forall {y_s}\quad \exists {z_1}\exists {z_2} \cdots \exists {z_t}\,\psi ,\end{equation*},其中ψ是无量词的一阶公式,检验图到${\mathcal{P}}$的消去距离是否不超过k,是否可由k参数化的定参数可处理。可由Σ3的公式表示的图的属性包括有界度,不包含禁止子图,或包含有界支配集。我们对这一定理进行了补充,证明这样的一般命题对于具有更有表现力的前缀结构的公式并不成立:有公式φ∈Π3,其计算消除距离为W[2]-hard。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信