{"title":"Natural Scene Character Recognition Using Robust PCA and Sparse Representation","authors":"Zheng Zhang, Yong Xu, Cheng-Lin Liu","doi":"10.1109/DAS.2016.32","DOIUrl":null,"url":null,"abstract":"Natural scene character recognition is challenging due to the cluttered background, which is hard to separate from text. In this paper, we propose a novel method for robust scene character recognition. Specifically, we first use robust principal component analysis (PCA) to denoise character image by recovering the missing low-rank component and filtering out the sparse noise term, and then use a simple Histogram of oriented Gradient (HOG) to perform image feature extraction, and finally, use a sparse representation based classifier for recognition. In experiments on four public datasets, namely the Char74K dataset, ICADAR 2003 robust reading dataset, Street View Text (SVT) dataset and IIIT5K-word dataset, our method was demonstrated to be competitive with the state-of-the-art methods.","PeriodicalId":197359,"journal":{"name":"2016 12th IAPR Workshop on Document Analysis Systems (DAS)","volume":"82 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th IAPR Workshop on Document Analysis Systems (DAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2016.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Natural scene character recognition is challenging due to the cluttered background, which is hard to separate from text. In this paper, we propose a novel method for robust scene character recognition. Specifically, we first use robust principal component analysis (PCA) to denoise character image by recovering the missing low-rank component and filtering out the sparse noise term, and then use a simple Histogram of oriented Gradient (HOG) to perform image feature extraction, and finally, use a sparse representation based classifier for recognition. In experiments on four public datasets, namely the Char74K dataset, ICADAR 2003 robust reading dataset, Street View Text (SVT) dataset and IIIT5K-word dataset, our method was demonstrated to be competitive with the state-of-the-art methods.