A Column-Parallel Time-Interleaved SAR/SS ADC for Computing in Memory with 2-8bit Reconfigurable Resolution

Yuandong Li, Li Du, Yuan Du
{"title":"A Column-Parallel Time-Interleaved SAR/SS ADC for Computing in Memory with 2-8bit Reconfigurable Resolution","authors":"Yuandong Li, Li Du, Yuan Du","doi":"10.1109/AICAS57966.2023.10168604","DOIUrl":null,"url":null,"abstract":"Computing in Memory (CiM), as a computing system with non-von Neumann architecture, has been reported as one of the most promising neural network accelerators in the future. Compared with digital-based computation, CiM uses RAM arrays to calculate and store in the analog domain, avoiding the high delay and energy consumption caused by data transfer. However, the computational results require data converters for quantization, which often limits the development of high-performance CiMs. In this work, we propose a 2-8bit reconfigurable time-interleaved hybrid ADC architecture for high-speed CiMs, including successive approximation and single-slope stages. Reconfigurability introduces a trade-off between resolution and conversion speed for ADCs in different computing scenarios. A prototype was implemented in a 55 nm CMOS technology, which occupies an area of 330μm × 13μm and consumes a power of 1.429mW at 8-bit conversion mode. With a Nyquist frequency input sampled at 350 MS/s, the SNDR and SFDR are 40.93 dB and 51.08 dB, respectively. The resultant Walden figure of merit is 44.8 fJ/conv.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computing in Memory (CiM), as a computing system with non-von Neumann architecture, has been reported as one of the most promising neural network accelerators in the future. Compared with digital-based computation, CiM uses RAM arrays to calculate and store in the analog domain, avoiding the high delay and energy consumption caused by data transfer. However, the computational results require data converters for quantization, which often limits the development of high-performance CiMs. In this work, we propose a 2-8bit reconfigurable time-interleaved hybrid ADC architecture for high-speed CiMs, including successive approximation and single-slope stages. Reconfigurability introduces a trade-off between resolution and conversion speed for ADCs in different computing scenarios. A prototype was implemented in a 55 nm CMOS technology, which occupies an area of 330μm × 13μm and consumes a power of 1.429mW at 8-bit conversion mode. With a Nyquist frequency input sampled at 350 MS/s, the SNDR and SFDR are 40.93 dB and 51.08 dB, respectively. The resultant Walden figure of merit is 44.8 fJ/conv.
一种用于2-8位可重构分辨率内存计算的列并行时间交错SAR/SS ADC
内存计算(CiM)作为一种非冯·诺依曼结构的计算系统,已被报道为未来最有前途的神经网络加速器之一。与基于数字的计算相比,CiM使用RAM阵列在模拟域中进行计算和存储,避免了数据传输带来的高延迟和能耗。然而,计算结果需要数据转换器进行量化,这往往限制了高性能cim的发展。在这项工作中,我们提出了一个用于高速cim的2-8位可重构时间交错混合ADC架构,包括连续逼近和单斜率级。可重构性为adc在不同的计算场景中引入了分辨率和转换速度之间的权衡。原型机采用55 nm CMOS工艺实现,其面积为330μm × 13μm, 8位转换模式功耗为1.429mW。以350 MS/s采样频率输入奈奎斯特频率时,SNDR和SFDR分别为40.93 dB和51.08 dB。由此得出的瓦尔登功绩系数为44.8 fJ/conv。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信