{"title":"Optimized PI Control with Tracking Differentiator for Negative Pressure Cabin Control","authors":"H. Ren, Cui-Cui Song","doi":"10.1109/CAC57257.2022.10056016","DOIUrl":null,"url":null,"abstract":"To block the epidemics like \"Corona Virus Disease 2019(COVID-19)\" spreading, an effective isolation of the infected patients during the transportation is an important issue, which makes the negative pressure cabin (NPC) become a key equipment. There exist some practical NPCs in service, whose pressures are mostly controlled using the conventional PID controller with parameters regulated by engineering methods. Until now, there is no report about the model of NPC system from the authors’ best knowledge. In this paper, the model of the NPC system is reported, which is an inherent nonlinear system. Because of the nonlinear nature of the cabin pressure, the conventional PID controller cannot achieve desire performance to balance the transient and the steady state performance, even though the optimized PID parameters are chosen using the on-line optimization based on genetic algorithm. To solve such a problem, Tracking Differentiator (TD) and PI controller are combined to achieve the desire performance using the optimized parameters. The experiment results show the improvement of the proposed method.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"307 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10056016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To block the epidemics like "Corona Virus Disease 2019(COVID-19)" spreading, an effective isolation of the infected patients during the transportation is an important issue, which makes the negative pressure cabin (NPC) become a key equipment. There exist some practical NPCs in service, whose pressures are mostly controlled using the conventional PID controller with parameters regulated by engineering methods. Until now, there is no report about the model of NPC system from the authors’ best knowledge. In this paper, the model of the NPC system is reported, which is an inherent nonlinear system. Because of the nonlinear nature of the cabin pressure, the conventional PID controller cannot achieve desire performance to balance the transient and the steady state performance, even though the optimized PID parameters are chosen using the on-line optimization based on genetic algorithm. To solve such a problem, Tracking Differentiator (TD) and PI controller are combined to achieve the desire performance using the optimized parameters. The experiment results show the improvement of the proposed method.