RRNS Base Extension Error-Correcting Code for Performance Optimization of Scalable Reliable Distributed Cloud Data Storage

M. Babenko, A. Tchernykh, Luis Bernardo Pulido-Gaytan, J. M. Cortés-Mendoza, Egor Shiryaev, E. Golimblevskaia, A. Avetisyan, S. Nesmachnow
{"title":"RRNS Base Extension Error-Correcting Code for Performance Optimization of Scalable Reliable Distributed Cloud Data Storage","authors":"M. Babenko, A. Tchernykh, Luis Bernardo Pulido-Gaytan, J. M. Cortés-Mendoza, Egor Shiryaev, E. Golimblevskaia, A. Avetisyan, S. Nesmachnow","doi":"10.1109/IPDPSW52791.2021.00087","DOIUrl":null,"url":null,"abstract":"Ensuring reliable data storage in a cloud environment is a challenging problem. One of the efficient mechanisms used to solve it is the Redundant Residue Number System (RRNS) with the projection method, a commonly used mechanism for detecting errors. However, the error correction based on the projection method has exponential complexity depending on the number of control and working moduli. In this paper, we propose an optimization mechanism using a base extension and Hamming distance to reduce the number of calculated projections. We show that they can be reduced up to three times than the classical projection method and, hence, the time complexity of data recovery in the distributed cloud data storage.","PeriodicalId":170832,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW52791.2021.00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Ensuring reliable data storage in a cloud environment is a challenging problem. One of the efficient mechanisms used to solve it is the Redundant Residue Number System (RRNS) with the projection method, a commonly used mechanism for detecting errors. However, the error correction based on the projection method has exponential complexity depending on the number of control and working moduli. In this paper, we propose an optimization mechanism using a base extension and Hamming distance to reduce the number of calculated projections. We show that they can be reduced up to three times than the classical projection method and, hence, the time complexity of data recovery in the distributed cloud data storage.
面向可扩展可靠分布式云数据存储性能优化的RRNS基扩展纠错码
在云环境中确保可靠的数据存储是一个具有挑战性的问题。基于投影法的冗余余数系统(RRNS)是解决这一问题的有效机制之一,是一种常用的误差检测机制。然而,基于投影法的误差修正具有指数复杂度,这取决于控制数量和工作模量。在本文中,我们提出了一种利用基扩展和汉明距离来减少计算投影数量的优化机制。我们表明,它们可以比经典的投影方法减少三倍,因此,在分布式云数据存储中数据恢复的时间复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信