RABBIC: Rank-Based BIClustering Algorithm

Lingling Huang, Qing Liu, Nan Yang, Yaping Li, Lin Xiao
{"title":"RABBIC: Rank-Based BIClustering Algorithm","authors":"Lingling Huang, Qing Liu, Nan Yang, Yaping Li, Lin Xiao","doi":"10.1109/WISA.2015.50","DOIUrl":null,"url":null,"abstract":"Biclustering performs simultaneous clustering on the row and column dimensions of the data matrix, it could discover data modules in the data matrix. Gene module is an important concept in systems biology. In this paper, gene modules are specifically defined as a set of genes whose expression levels share the same linear order on each member of a subset of samples. In order to discover such modules, a novel algorithm, the Rank-Based BIClustering algorithm (RABBIC), is designed and developed. RABBIC, when applied to the real ovarian cancer gene expression data, identifies 93 modules, and 25 are biologically significant according to the gene set functional enrichment analysis. This paper deals with the gene expression data from the aspect of rank, which is helpful in reducing the noise of the data. It provides new thoughts for the researches of gene module identification.","PeriodicalId":198938,"journal":{"name":"2015 12th Web Information System and Application Conference (WISA)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 12th Web Information System and Application Conference (WISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2015.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biclustering performs simultaneous clustering on the row and column dimensions of the data matrix, it could discover data modules in the data matrix. Gene module is an important concept in systems biology. In this paper, gene modules are specifically defined as a set of genes whose expression levels share the same linear order on each member of a subset of samples. In order to discover such modules, a novel algorithm, the Rank-Based BIClustering algorithm (RABBIC), is designed and developed. RABBIC, when applied to the real ovarian cancer gene expression data, identifies 93 modules, and 25 are biologically significant according to the gene set functional enrichment analysis. This paper deals with the gene expression data from the aspect of rank, which is helpful in reducing the noise of the data. It provides new thoughts for the researches of gene module identification.
RABBIC:基于秩的聚类算法
双聚类对数据矩阵的行维和列维同时进行聚类,可以发现数据矩阵中的数据模块。基因模块是系统生物学中的一个重要概念。在本文中,基因模块被具体定义为一组基因,其表达水平在样本子集的每个成员上具有相同的线性顺序。为了发现这些模块,设计并开发了一种基于秩的聚类算法(RABBIC)。RABBIC应用于真实卵巢癌基因表达数据,鉴定出93个模块,其中25个模块根据基因集功能富集分析具有生物学显著性。本文从秩的角度对基因表达数据进行处理,有助于降低数据的噪声。这为基因模块鉴定的研究提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信