{"title":"Landmine detection with Multiple Instance Hidden Markov Models","authors":"S. E. Yüksel, Jeremy Bolton, P. Gader","doi":"10.1109/MLSP.2012.6349734","DOIUrl":null,"url":null,"abstract":"A novel Multiple Instance Hidden Markov Model (MI-HMM) is introduced for classification of ambiguous time-series data, and its training is accomplished via Metropolis-Hastings sampling. Without introducing any additional parameters, the MI-HMM provides an elegant and simple way to learn the parameters of an HMM in a Multiple Instance Learning (MIL) framework. The efficacy of the model is shown on a real landmine dataset. Experiments on the landmine dataset show that MI-HMM learning is very effective, and outperforms the state-of-the-art models that are currently being used in the field for landmine detection.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
A novel Multiple Instance Hidden Markov Model (MI-HMM) is introduced for classification of ambiguous time-series data, and its training is accomplished via Metropolis-Hastings sampling. Without introducing any additional parameters, the MI-HMM provides an elegant and simple way to learn the parameters of an HMM in a Multiple Instance Learning (MIL) framework. The efficacy of the model is shown on a real landmine dataset. Experiments on the landmine dataset show that MI-HMM learning is very effective, and outperforms the state-of-the-art models that are currently being used in the field for landmine detection.