Reconciling malware labeling discrepancy via consensus learning

Ting Wang, Xin Hu, S. Meng, R. Sailer
{"title":"Reconciling malware labeling discrepancy via consensus learning","authors":"Ting Wang, Xin Hu, S. Meng, R. Sailer","doi":"10.1109/ICDEW.2014.6818308","DOIUrl":null,"url":null,"abstract":"Anti-virus systems developed by different vendors often demonstrate strong discrepancy in the labels they assign to given malware, which significantly hinders threat intelligence sharing. The key challenge of addressing this discrepancy stems from the difficulty of re-standardizing already-in-use systems. In this paper we explore a non-intrusive alternative. We propose to leverage the correlation between the malware labels of different anti-virus systems to create a “consensus” classification system, through which different systems can share information without modifying their own labeling conventions. To this end, we present a novel classification integration framework Latin which exploits the correspondence between participating anti-virus systems as reflected in heterogeneous information at instance-instance, instance-class, and class-class levels. We provide results from extensive experimental studies using real datasets and concrete use cases to verify the efficacy of Latin in reconciling the malware labeling discrepancy.","PeriodicalId":302600,"journal":{"name":"2014 IEEE 30th International Conference on Data Engineering Workshops","volume":"60 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 30th International Conference on Data Engineering Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2014.6818308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Anti-virus systems developed by different vendors often demonstrate strong discrepancy in the labels they assign to given malware, which significantly hinders threat intelligence sharing. The key challenge of addressing this discrepancy stems from the difficulty of re-standardizing already-in-use systems. In this paper we explore a non-intrusive alternative. We propose to leverage the correlation between the malware labels of different anti-virus systems to create a “consensus” classification system, through which different systems can share information without modifying their own labeling conventions. To this end, we present a novel classification integration framework Latin which exploits the correspondence between participating anti-virus systems as reflected in heterogeneous information at instance-instance, instance-class, and class-class levels. We provide results from extensive experimental studies using real datasets and concrete use cases to verify the efficacy of Latin in reconciling the malware labeling discrepancy.
通过共识学习协调恶意软件标签差异
不同厂商开发的反病毒系统通常在给特定恶意软件分配的标签上存在很大差异,这极大地阻碍了威胁情报的共享。解决这种差异的关键挑战源于重新标准化已经在使用的系统的困难。在本文中,我们探索了一种非侵入性的替代方案。我们建议利用不同反病毒系统的恶意软件标签之间的相关性来创建一个“共识”分类系统,通过这个分类系统,不同的系统可以在不修改自己的标签约定的情况下共享信息。为此,我们提出了一种新的分类集成框架Latin,它利用了参与反病毒系统之间的对应关系,反映在实例-实例、实例-类和类-类级别的异构信息中。我们提供了使用真实数据集和具体用例进行广泛实验研究的结果,以验证拉丁语在调和恶意软件标记差异方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信