A New Hypred Improved Method for Measuring Concept Semantic Similarity in WordNet

Xiao-gang Zhang, Shouqian Sun, Ke-jun Zhang
{"title":"A New Hypred Improved Method for Measuring Concept Semantic Similarity in WordNet","authors":"Xiao-gang Zhang, Shouqian Sun, Ke-jun Zhang","doi":"10.34028/iajit/17/4/1","DOIUrl":null,"url":null,"abstract":"Computing semantic similarity between concepts is an important issue in natural language processing, artificial intelligence, information retrieval and knowledge management. The measure of computing concept similarity is a fundament of semantic computation. In this paper, we analyze typical semantic similarity measures and note Wu and Palmer’s measure which does not distinguish the similarities between nodes from a node to different nodes of the same level. Then, we synthesize the advantages of measure of path-based and IC-based, and propose a new hybrid method for measuring semantic similarity. By testing on a fragment of WordNet hierarchical tree, the results demonstrate the proposed method accurately distinguishes the similarities between nodes from a node to different nodes of the same level and overcome the shortcoming of the Wu and Palmer’s measure","PeriodicalId":161392,"journal":{"name":"The International Arab Journal of Information Technology","volume":"445 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Arab Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/iajit/17/4/1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Computing semantic similarity between concepts is an important issue in natural language processing, artificial intelligence, information retrieval and knowledge management. The measure of computing concept similarity is a fundament of semantic computation. In this paper, we analyze typical semantic similarity measures and note Wu and Palmer’s measure which does not distinguish the similarities between nodes from a node to different nodes of the same level. Then, we synthesize the advantages of measure of path-based and IC-based, and propose a new hybrid method for measuring semantic similarity. By testing on a fragment of WordNet hierarchical tree, the results demonstrate the proposed method accurately distinguishes the similarities between nodes from a node to different nodes of the same level and overcome the shortcoming of the Wu and Palmer’s measure
WordNet中概念语义相似度度量的一种新的混合改进方法
概念间语义相似度计算是自然语言处理、人工智能、信息检索和知识管理等领域的一个重要问题。计算概念相似度的度量是语义计算的基础。在本文中,我们分析了典型的语义相似度度量,并注意到Wu和Palmer的度量没有区分节点之间的相似度,从一个节点到同一层次的不同节点。在此基础上,综合了基于路径的度量和基于集成电路的度量的优点,提出了一种新的混合度量语义相似度的方法。通过在WordNet层次树的一个片段上进行测试,结果表明该方法能够准确地区分同一节点与同一层次的不同节点之间的相似度,克服了Wu和Palmer方法的不足
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信