Towards Extreme and Sustainable Graph Processing for Urgent Societal Challenges in Europe

R.-C. Prodan, Dragi Kimovski, Andrea Bartolini, Michael Cochez, A. Iosup, E. Kharlamov, Jože M. Rožanec, Laurentiu A. Vasiliu, A. Varbanescu
{"title":"Towards Extreme and Sustainable Graph Processing for Urgent Societal Challenges in Europe","authors":"R.-C. Prodan, Dragi Kimovski, Andrea Bartolini, Michael Cochez, A. Iosup, E. Kharlamov, Jože M. Rožanec, Laurentiu A. Vasiliu, A. Varbanescu","doi":"10.1109/CloudSummit54781.2022.00010","DOIUrl":null,"url":null,"abstract":"The Graph-Massivizer project, funded by the Horizon Europe research and innovation program, researches and develops a high-performance, scalable, and sustainable platform for information processing and reasoning based on the massive graph (MG) representation of extreme data. It delivers a toolkit of five open-source software tools and FAIR graph datasets covering the sustainable lifecycle of processing extreme data as MGs. The tools focus on holistic usability (from extreme data ingestion and MG creation), automated intelligence (through analytics and reasoning), performance modelling, and environmental sustainability tradeoffs, supported by credible data-driven evidence across the computing continuum. The automated operation uses the emerging serverless computing paradigm for efficiency and event responsiveness. Thus, it supports experienced and novice stakeholders from a broad group of large and small organisations to capitalise on extreme data through MG programming and processing. Graph-Massivizer validates its innovation on four complementary use cases considering their extreme data properties and coverage of the three sustainability pillars (economy, society, and environment): sustainable green finance, global environment protection foresight, green AI for the sustainable automotive industry, and data centre digital twin for exascale computing. Graph-Massivizer promises 70% more efficient analytics than AliGraph, and 30 % improved energy awareness for extract, transform and load storage operations than Amazon Redshift. Furthermore, it aims to demonstrate a possible two-fold improvement in data centre energy efficiency and over 25 % lower greenhouse gas emissions for basic graph operations.","PeriodicalId":106553,"journal":{"name":"2022 IEEE Cloud Summit","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Cloud Summit","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudSummit54781.2022.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The Graph-Massivizer project, funded by the Horizon Europe research and innovation program, researches and develops a high-performance, scalable, and sustainable platform for information processing and reasoning based on the massive graph (MG) representation of extreme data. It delivers a toolkit of five open-source software tools and FAIR graph datasets covering the sustainable lifecycle of processing extreme data as MGs. The tools focus on holistic usability (from extreme data ingestion and MG creation), automated intelligence (through analytics and reasoning), performance modelling, and environmental sustainability tradeoffs, supported by credible data-driven evidence across the computing continuum. The automated operation uses the emerging serverless computing paradigm for efficiency and event responsiveness. Thus, it supports experienced and novice stakeholders from a broad group of large and small organisations to capitalise on extreme data through MG programming and processing. Graph-Massivizer validates its innovation on four complementary use cases considering their extreme data properties and coverage of the three sustainability pillars (economy, society, and environment): sustainable green finance, global environment protection foresight, green AI for the sustainable automotive industry, and data centre digital twin for exascale computing. Graph-Massivizer promises 70% more efficient analytics than AliGraph, and 30 % improved energy awareness for extract, transform and load storage operations than Amazon Redshift. Furthermore, it aims to demonstrate a possible two-fold improvement in data centre energy efficiency and over 25 % lower greenhouse gas emissions for basic graph operations.
面向极端和可持续的图形处理在欧洲的紧迫社会挑战
graph - massivizer项目由Horizon Europe研究和创新计划资助,研究和开发了一个高性能、可扩展和可持续的平台,用于基于海量图(MG)表示极端数据的信息处理和推理。它提供了一个由五个开源软件工具和FAIR图形数据集组成的工具包,涵盖了作为mg处理极端数据的可持续生命周期。这些工具侧重于整体可用性(从极端数据摄取和MG创建)、自动化智能(通过分析和推理)、性能建模和环境可持续性权衡,并由可信的数据驱动证据支持整个计算连续体。自动化操作使用新兴的无服务器计算范例来提高效率和事件响应能力。因此,它支持来自大型和小型组织的广泛群体的经验丰富和新手利益相关者通过MG编程和处理来利用极端数据。Graph-Massivizer在四个互补用例上验证了其创新,考虑到它们的极端数据属性和三个可持续发展支柱(经济、社会和环境)的覆盖范围:可持续绿色金融、全球环境保护远见、可持续汽车行业的绿色人工智能和用于百亿亿次计算的数据中心数字孪生。Graph-Massivizer承诺比AliGraph的分析效率提高70%,比Amazon Redshift的提取、转换和负载存储操作的能源意识提高30%。此外,它旨在展示数据中心能源效率可能的两倍提高,并在基本图形操作中减少超过25%的温室气体排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信