The Effects of Underlying Mono and Multilingual Representations for Text Classification

Fernando Tadao Ito, Helena de Medeiros Caseli, J. Moreira
{"title":"The Effects of Underlying Mono and Multilingual Representations for Text Classification","authors":"Fernando Tadao Ito, Helena de Medeiros Caseli, J. Moreira","doi":"10.1109/BRACIS.2018.00054","DOIUrl":null,"url":null,"abstract":"With the exponential growth of multimedia datasets comes the need to combine multiple data representations to create \"conceptual\" vector spaces in order to use all available sources of information. Following previous experiments [1], in this paper we explore how two different languages can be combined to better represent information. Methods to create textual representations, such as Word2Vec and GloVe, are already well-established in academia and, usually, a single representation method is used in Machine Learning tasks. In this paper, we investigate the effects of different combinations of textual representations to perform classification tasks on a multilingual dataset composed of international news in Portuguese and English. This paper aims to analyze the differences between combinations, and how these representations perform in a small dataset with multiple data inputs.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the exponential growth of multimedia datasets comes the need to combine multiple data representations to create "conceptual" vector spaces in order to use all available sources of information. Following previous experiments [1], in this paper we explore how two different languages can be combined to better represent information. Methods to create textual representations, such as Word2Vec and GloVe, are already well-established in academia and, usually, a single representation method is used in Machine Learning tasks. In this paper, we investigate the effects of different combinations of textual representations to perform classification tasks on a multilingual dataset composed of international news in Portuguese and English. This paper aims to analyze the differences between combinations, and how these representations perform in a small dataset with multiple data inputs.
基础单语言和多语言表示对文本分类的影响
随着多媒体数据集的指数级增长,需要组合多种数据表示来创建“概念性”向量空间,以便使用所有可用的信息源。根据之前的实验[1],本文探讨了如何将两种不同的语言结合起来更好地表示信息。创建文本表示的方法,如Word2Vec和GloVe,已经在学术界得到了很好的应用,通常在机器学习任务中使用单一的表示方法。在本文中,我们研究了不同文本表示组合对葡萄牙语和英语国际新闻组成的多语言数据集执行分类任务的影响。本文旨在分析组合之间的差异,以及这些表示在具有多个数据输入的小数据集中的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信