{"title":"Amorphous Calcium Phosphate as Bioactive Filler in Polymeric Dental Composites","authors":"D. Bienek, A. Giuseppetti, D. Škrtić","doi":"10.5772/INTECHOPEN.86640","DOIUrl":null,"url":null,"abstract":"As biocompatible and osteo-inductive precursor to biological apatite formation, amorphous calcium phosphate (ACP) resorbs at the rate that closely coin-cides with the rate of new bone formation and is more osteo-conductive than its crystalline counterpart. In addition, in the oral environment, ACP intrinsically provides a protracted supply of the remineralizing calcium and phosphate ions needed for regeneration of mineral lost to tooth decay. These features make ACP composites a strong remineralizing tool at the site of caries attack. Our group has been on the forefront of the research on bioactive, remineralizing, polymeric ACP-based dental materials for over two decades. This entry describes methods for filler, polymer, and composite fabrication and a battery of physicochemical and biological tests involved in evaluation of ACP-based restoratives. Also presented is our most recent design of ACP remineralizing composites with added antimicrobial capability that shows promise for extended dental and, potentially, wider biomedical applications.","PeriodicalId":156897,"journal":{"name":"Contemporary Topics about Phosphorus in Biology and Materials","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Topics about Phosphorus in Biology and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.86640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
As biocompatible and osteo-inductive precursor to biological apatite formation, amorphous calcium phosphate (ACP) resorbs at the rate that closely coin-cides with the rate of new bone formation and is more osteo-conductive than its crystalline counterpart. In addition, in the oral environment, ACP intrinsically provides a protracted supply of the remineralizing calcium and phosphate ions needed for regeneration of mineral lost to tooth decay. These features make ACP composites a strong remineralizing tool at the site of caries attack. Our group has been on the forefront of the research on bioactive, remineralizing, polymeric ACP-based dental materials for over two decades. This entry describes methods for filler, polymer, and composite fabrication and a battery of physicochemical and biological tests involved in evaluation of ACP-based restoratives. Also presented is our most recent design of ACP remineralizing composites with added antimicrobial capability that shows promise for extended dental and, potentially, wider biomedical applications.