Measuring Regret in Routing: Assessing the Impact of Increased App Usage

Théophile Cabannes, Frank Shyu, Emily Porter, Shuai Yao, Yexin Wang, Marco Antonio Sangiovanni Vincentelli, Stefanus Hinardi, M. Zhao, A. Bayen
{"title":"Measuring Regret in Routing: Assessing the Impact of Increased App Usage","authors":"Théophile Cabannes, Frank Shyu, Emily Porter, Shuai Yao, Yexin Wang, Marco Antonio Sangiovanni Vincentelli, Stefanus Hinardi, M. Zhao, A. Bayen","doi":"10.1109/ITSC.2018.8569758","DOIUrl":null,"url":null,"abstract":"This article is focused on measuring the impact of navigational apps on road traffic patterns. We first define the marginal regret, which characterizes the difference between the travel time experienced on the most optimal path and the path of interest between the same origin destination pair. We then introduce a new metric, the average marginal regret, which is the average of marginal regret, taken over all possible OD pairs in the network. We evaluate the average marginal regret in simulations with varying proportions of app and non-app users (information vs. no information) using the microsimulation software Aimsun. We conduct experiments on a benchmark network as well as a calibrated corridor model of the I–210 in Los Angeles for which OD demand data is gathered from several sensing sources as well as actual signal timing plans. In both cases (i.e. the benchmark and I–210) experiments demonstrate that the use of apps leads to a system-wide convergence towards Nash equilibrium.","PeriodicalId":395239,"journal":{"name":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2018.8569758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This article is focused on measuring the impact of navigational apps on road traffic patterns. We first define the marginal regret, which characterizes the difference between the travel time experienced on the most optimal path and the path of interest between the same origin destination pair. We then introduce a new metric, the average marginal regret, which is the average of marginal regret, taken over all possible OD pairs in the network. We evaluate the average marginal regret in simulations with varying proportions of app and non-app users (information vs. no information) using the microsimulation software Aimsun. We conduct experiments on a benchmark network as well as a calibrated corridor model of the I–210 in Los Angeles for which OD demand data is gathered from several sensing sources as well as actual signal timing plans. In both cases (i.e. the benchmark and I–210) experiments demonstrate that the use of apps leads to a system-wide convergence towards Nash equilibrium.
衡量后悔路线:评估增加应用程序使用的影响
本文的重点是测量导航应用程序对道路交通模式的影响。我们首先定义了边际遗憾,它表征了在同一起点和目的地对之间的最优路径上经历的旅行时间与感兴趣的路径之间的差异。然后,我们引入了一个新的度量,即平均边际后悔,它是网络中所有可能的OD对的边际后悔的平均值。我们使用微模拟软件Aimsun评估了不同比例的应用程序和非应用程序用户(信息与无信息)在模拟中的平均边际后悔。我们在洛杉矶I-210的基准网络和校准走廊模型上进行了实验,其中OD需求数据是从几个传感源和实际信号授时计划中收集的。在这两种情况下(即基准测试和I-210),实验表明应用程序的使用会导致系统范围内的纳什均衡收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信