Stabilized least squares estimators: convergence and error propagation properties

Janusz Milek, F. Kraus
{"title":"Stabilized least squares estimators: convergence and error propagation properties","authors":"Janusz Milek, F. Kraus","doi":"10.1109/CDC.1991.261118","DOIUrl":null,"url":null,"abstract":"The basic convergence and error propagation properties of the recursive least-squares estimator stabilized algorithm with invariant factors (RLS-SI) are discussed. Under the assumption that the data are generated by a deterministic LTI system, the RLS-SI algorithm is exponentially convergent for persistently exciting signals. For a nonpersistent excitation the normalized prediction errors and the estimation changes are square summable and the estimates are bounded. If the excitation is strictly limited to a hyperspace, the estimation error on the excitation hyperspace tends to zero. If the measurements are corrupted by an additive white noise the parameter error converges to a random variable having zero mean and a limited variance. Numerical properties of the algorithms are favorable. A single error introduced into an arbitrary point of the RLS-SI algorithm decays exponentially.<<ETX>>","PeriodicalId":344553,"journal":{"name":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1991.261118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The basic convergence and error propagation properties of the recursive least-squares estimator stabilized algorithm with invariant factors (RLS-SI) are discussed. Under the assumption that the data are generated by a deterministic LTI system, the RLS-SI algorithm is exponentially convergent for persistently exciting signals. For a nonpersistent excitation the normalized prediction errors and the estimation changes are square summable and the estimates are bounded. If the excitation is strictly limited to a hyperspace, the estimation error on the excitation hyperspace tends to zero. If the measurements are corrupted by an additive white noise the parameter error converges to a random variable having zero mean and a limited variance. Numerical properties of the algorithms are favorable. A single error introduced into an arbitrary point of the RLS-SI algorithm decays exponentially.<>
稳定最小二乘估计:收敛性和误差传播特性
讨论了具有不变因子的递推最小二乘估计稳定算法(RLS-SI)的基本收敛和误差传播特性。在假设数据是由确定性LTI系统生成的情况下,RLS-SI算法对于持续激励信号具有指数收敛性。对于非持续性激励,归一化预测误差和估计变化是平方可和的,估计是有界的。如果激励被严格限制在一个超空间中,则在激励超空间上的估计误差趋于零。如果测量值被加性白噪声破坏,则参数误差收敛到具有零均值和有限方差的随机变量。该算法的数值性质是良好的。引入RLS-SI算法任意点的单个误差呈指数衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信