On a Liouville Integrable Planar Differential System with Non-Algebraic Limit Cycle

Meryem Belattar, R. Cheurfa, A. Bendjeddou
{"title":"On a Liouville Integrable Planar Differential System with Non-Algebraic Limit Cycle","authors":"Meryem Belattar, R. Cheurfa, A. Bendjeddou","doi":"10.1109/ICRAMI52622.2021.9585936","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that a class of differential system of degree nine is Liouville integrable by transforming it into a Bernoulli differential equation and we determine exactly its first integral. This allows us to show that this class admits an explicit non-algebraic limit cycle enclosing the origin, here a non-elementary singular point. For singularities, at infinity, this class does not possess singular points.","PeriodicalId":440750,"journal":{"name":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMI52622.2021.9585936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove that a class of differential system of degree nine is Liouville integrable by transforming it into a Bernoulli differential equation and we determine exactly its first integral. This allows us to show that this class admits an explicit non-algebraic limit cycle enclosing the origin, here a non-elementary singular point. For singularities, at infinity, this class does not possess singular points.
一类具有非代数极限环的Liouville可积平面微分系统
本文通过将一类九次微分系统转化为伯努利微分方程,证明了它是Liouville可积的,并准确地确定了它的第一个积分。这使我们能够证明该类允许有一个包含原点的显式非代数极限环,这里是一个非初等奇点。对于奇点,在无穷远处,该类不具有奇点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信