A Numerical Approach for Solving High-Order Boundary Value Problems

Falade K.I
{"title":"A Numerical Approach for Solving High-Order Boundary Value Problems","authors":"Falade K.I","doi":"10.5815/ijmsc.2019.03.01","DOIUrl":null,"url":null,"abstract":"In this paper, a numerical method which produces an approximate solution is presented for the numerical solutions of sixth,eighth,ninth and twelfth order boundary value problems .With the aid of derivatives of power series which slightly perturbe and collocate, eventually converts boundary value problems into the square matrix equations with the unknown coefficients obtain using MAPLE 18 software. This method gives the approximate solutions and compare with the exact solutions. Finally, some examples and their numerical solutions are given by comparing the numerical results obtained to other methods available in the literature, show a good agreement and efficiency.","PeriodicalId":312036,"journal":{"name":"International Journal of Mathematical Sciences and Computing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Sciences and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijmsc.2019.03.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a numerical method which produces an approximate solution is presented for the numerical solutions of sixth,eighth,ninth and twelfth order boundary value problems .With the aid of derivatives of power series which slightly perturbe and collocate, eventually converts boundary value problems into the square matrix equations with the unknown coefficients obtain using MAPLE 18 software. This method gives the approximate solutions and compare with the exact solutions. Finally, some examples and their numerical solutions are given by comparing the numerical results obtained to other methods available in the literature, show a good agreement and efficiency.
求解高阶边值问题的数值方法
本文对六阶、八阶、九阶和十二阶边值问题的数值解给出了近似解的数值方法,并借助于微扰和配位的幂级数导数,最终将边值问题转化为用MAPLE 18软件求得的系数未知的方阵方程。该方法给出了近似解,并与精确解进行了比较。最后,通过与文献中已有方法的数值结果比较,给出了一些算例及其数值解,结果表明了较好的一致性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信