{"title":"Multi-graph Convolution Network with Jump Connection for Event Detection","authors":"Xiangbin Meng, Pengfei Wang, Haoran Yan, Liutong Xu, Jiafeng Guo, Yixing Fan","doi":"10.1109/ICTAI.2019.00108","DOIUrl":null,"url":null,"abstract":"Event detection is an important information extraction task in nature language processing. Recently, the method based on syntactic information and graph convolution network has been wildly used in event detection task and achieved good performance. For event detection, graph convolution network (GCN) based on dependency arcs can capture the sentence syntactic representations and the syntactic information, which is from candidate triggers to arguments. However, existing methods based on GCN with dependency arcs suffer from imbalance and redundant information in graph. To capture important and refined information in graph, we propose Multi-graph Convolution Network with Jump Connection (MGJ-ED). The multi-graph convolution network module adds a core subgraph splitted from dependency graph which selects important one-hop neighbors' syntactic information in breadth via GCN. Also the jump connection architecture aggregate GCN layers' representation with different attention score, which learns the importance of neighbors' syntactic information of different hops away in depth. The experimental results on the widely used ACE 2005 dataset shows the superiority of the other state-of-the-art methods.","PeriodicalId":346657,"journal":{"name":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2019.00108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Event detection is an important information extraction task in nature language processing. Recently, the method based on syntactic information and graph convolution network has been wildly used in event detection task and achieved good performance. For event detection, graph convolution network (GCN) based on dependency arcs can capture the sentence syntactic representations and the syntactic information, which is from candidate triggers to arguments. However, existing methods based on GCN with dependency arcs suffer from imbalance and redundant information in graph. To capture important and refined information in graph, we propose Multi-graph Convolution Network with Jump Connection (MGJ-ED). The multi-graph convolution network module adds a core subgraph splitted from dependency graph which selects important one-hop neighbors' syntactic information in breadth via GCN. Also the jump connection architecture aggregate GCN layers' representation with different attention score, which learns the importance of neighbors' syntactic information of different hops away in depth. The experimental results on the widely used ACE 2005 dataset shows the superiority of the other state-of-the-art methods.