J. G. Ortega-Mendoza, C. Hernández-Álvarez, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, F. Chávez, O. Goiz
{"title":"Photomelting and photofragmentation of silver nanoparticles suspended in ethanol","authors":"J. G. Ortega-Mendoza, C. Hernández-Álvarez, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, F. Chávez, O. Goiz","doi":"10.1117/12.2188730","DOIUrl":null,"url":null,"abstract":"An optical method to obtain a colloidal solution starting from a mixture of silver nanopowder and ethanol is presented. The particles of the silver nanopowder do not exhibit a specific shape, however in the colloidal solution are spherical. This method is carry out when the mixture is irradiated with a pulsed laser at 532 nm via optical fiber. Due to a stronger absorption of the laser light by silver nanoparticles arise both photofragmentation and photomelting processes. The photomelting process starts when the laser energy is 5 mJ/cm2, inducing an enlargement of nanoparticles whereas the photofragmentation occurs when the laser energy is 25 mJ/cm2 causing a reduction on their sizes (the higher energy is, the smaller nanoparticles are). Results show that it is possible to obtain a colloidal silver solution and to control the particle size by adjusting the laser energy. Experiments were performed at 5 and 25 mJ/cm2, and the results are presented.","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE NanoScience + Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2188730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An optical method to obtain a colloidal solution starting from a mixture of silver nanopowder and ethanol is presented. The particles of the silver nanopowder do not exhibit a specific shape, however in the colloidal solution are spherical. This method is carry out when the mixture is irradiated with a pulsed laser at 532 nm via optical fiber. Due to a stronger absorption of the laser light by silver nanoparticles arise both photofragmentation and photomelting processes. The photomelting process starts when the laser energy is 5 mJ/cm2, inducing an enlargement of nanoparticles whereas the photofragmentation occurs when the laser energy is 25 mJ/cm2 causing a reduction on their sizes (the higher energy is, the smaller nanoparticles are). Results show that it is possible to obtain a colloidal silver solution and to control the particle size by adjusting the laser energy. Experiments were performed at 5 and 25 mJ/cm2, and the results are presented.