Learn over Past, Evolve for Future: Forecasting Temporal Trends for Fake News Detection

Beizhe Hu, Qiang Sheng, Juan Cao, Yongchun Zhu, Danding Wang, Zhengjia Wang, Zhiwei Jin
{"title":"Learn over Past, Evolve for Future: Forecasting Temporal Trends for Fake News Detection","authors":"Beizhe Hu, Qiang Sheng, Juan Cao, Yongchun Zhu, Danding Wang, Zhengjia Wang, Zhiwei Jin","doi":"10.48550/arXiv.2306.14728","DOIUrl":null,"url":null,"abstract":"Fake news detection has been a critical task for maintaining the health of the online news ecosystem. However, very few existing works consider the temporal shift issue caused by the rapidly-evolving nature of news data in practice, resulting in significant performance degradation when training on past data and testing on future data. In this paper, we observe that the appearances of news events on the same topic may display discernible patterns over time, and posit that such patterns can assist in selecting training instances that could make the model adapt better to future data. Specifically, we design an effective framework FTT (Forecasting Temporal Trends), which could forecast the temporal distribution patterns of news data and then guide the detector to fast adapt to future distribution. Experiments on the real-world temporally split dataset demonstrate the superiority of our proposed framework.","PeriodicalId":352845,"journal":{"name":"Annual Meeting of the Association for Computational Linguistics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.14728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Fake news detection has been a critical task for maintaining the health of the online news ecosystem. However, very few existing works consider the temporal shift issue caused by the rapidly-evolving nature of news data in practice, resulting in significant performance degradation when training on past data and testing on future data. In this paper, we observe that the appearances of news events on the same topic may display discernible patterns over time, and posit that such patterns can assist in selecting training instances that could make the model adapt better to future data. Specifically, we design an effective framework FTT (Forecasting Temporal Trends), which could forecast the temporal distribution patterns of news data and then guide the detector to fast adapt to future distribution. Experiments on the real-world temporally split dataset demonstrate the superiority of our proposed framework.
学习过去,发展未来:预测假新闻检测的时间趋势
假新闻检测一直是维护网络新闻生态健康的重要任务。然而,在实践中,很少有现有的作品考虑到新闻数据的快速演变性质所导致的时间偏移问题,这导致在对过去数据进行训练和对未来数据进行测试时,性能显著下降。在本文中,我们观察到同一主题的新闻事件的出现可能会随着时间的推移显示出可识别的模式,并假设这些模式可以帮助选择训练实例,使模型更好地适应未来的数据。具体来说,我们设计了一个有效的框架FTT (Forecasting Temporal Trends,预测时态趋势),它可以预测新闻数据的时态分布模式,然后引导检测器快速适应未来的分布。在真实时间分割数据集上的实验证明了我们提出的框架的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信