{"title":"Learning to plan people-aware trajectories for robot navigation: A genetic algorithm*","authors":"Alberto Bacchin, Gloria Beraldo, E. Menegatti","doi":"10.1109/ecmr50962.2021.9568804","DOIUrl":null,"url":null,"abstract":"Nowadays, one of the emergent challenges in mobile robotics consists of navigating safely and efficiently in dynamic environments populated by people. This paper focuses on the robot’s motion planning by proposing a learning-based method to adjust the robot’s trajectories to people’s movements by respecting the proxemics rules. With this purpose, we design a genetic algorithm to train the navigation stack of ROS during the goal-based navigation while the robot is disturbed by people. We also present a simulation environment based on Gazebo that extends the animated model for emulating a more natural human’s walking. Preliminary results show that our approach is able to plan people-aware robot’s trajectories respecting proxemics limits without worsening the performance in navigation.","PeriodicalId":200521,"journal":{"name":"2021 European Conference on Mobile Robots (ECMR)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecmr50962.2021.9568804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Nowadays, one of the emergent challenges in mobile robotics consists of navigating safely and efficiently in dynamic environments populated by people. This paper focuses on the robot’s motion planning by proposing a learning-based method to adjust the robot’s trajectories to people’s movements by respecting the proxemics rules. With this purpose, we design a genetic algorithm to train the navigation stack of ROS during the goal-based navigation while the robot is disturbed by people. We also present a simulation environment based on Gazebo that extends the animated model for emulating a more natural human’s walking. Preliminary results show that our approach is able to plan people-aware robot’s trajectories respecting proxemics limits without worsening the performance in navigation.