Local search algorithms for memetic algorithms: understanding behaviors using biological intelligence

Beatrice Luca, M. Craus
{"title":"Local search algorithms for memetic algorithms: understanding behaviors using biological intelligence","authors":"Beatrice Luca, M. Craus","doi":"10.1109/ICSTCC.2018.8540690","DOIUrl":null,"url":null,"abstract":"Memetic Algorithms (MAs) are a class of stochastic global search heuristics in which Evolutionary Algorithms (EAs) - based approaches are combined usually with heuristic local searches. This hybridization is meant to reach solutions that would otherwise be unreachable by evolution or a local method alone. In this work, we propose three Local Search (LS) algorithms for hybridization with an existing Evolutionary Algorithm with Pareto ranking in order to define biological intelligence using the concepts of useful and utility and therefore to zoom on the basin of attraction of promising realistic solutions. Our experimental results with these memetic algorithms in the game of Checkers show how we can learn the organization of behaviors into paths of behaviors of different lengths and frequencies and then reveal the true nature of these behaviors.","PeriodicalId":308427,"journal":{"name":"2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC.2018.8540690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Memetic Algorithms (MAs) are a class of stochastic global search heuristics in which Evolutionary Algorithms (EAs) - based approaches are combined usually with heuristic local searches. This hybridization is meant to reach solutions that would otherwise be unreachable by evolution or a local method alone. In this work, we propose three Local Search (LS) algorithms for hybridization with an existing Evolutionary Algorithm with Pareto ranking in order to define biological intelligence using the concepts of useful and utility and therefore to zoom on the basin of attraction of promising realistic solutions. Our experimental results with these memetic algorithms in the game of Checkers show how we can learn the organization of behaviors into paths of behaviors of different lengths and frequencies and then reveal the true nature of these behaviors.
模因算法的局部搜索算法:利用生物智能理解行为
模因算法(Memetic Algorithms, MAs)是一类随机全局搜索启发式算法,它将基于进化算法的方法与启发式局部搜索相结合。这种杂交是为了达到通过进化或单独的局部方法无法达到的解决方案。在这项工作中,我们提出了三种局部搜索(LS)算法,用于与现有的具有帕累托排序的进化算法杂交,以便使用有用和效用的概念定义生物智能,从而放大有希望的现实解决方案的吸引力。我们在跳棋游戏中使用这些模因算法的实验结果表明,我们如何将行为的组织学习成不同长度和频率的行为路径,然后揭示这些行为的真实本质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信