Entire Information Attentive GRU for Text Representation

Guoxiu He, Wei Lu
{"title":"Entire Information Attentive GRU for Text Representation","authors":"Guoxiu He, Wei Lu","doi":"10.1145/3234944.3234947","DOIUrl":null,"url":null,"abstract":"Recurrent Neural Networks~(RNNs), such as Long Short-Term Memory~(LSTM) and Gated Recurrent Unit~(GRU), have been widely utilized in sequence representation. However, RNNs neglect variational information and long-term dependency. In this paper, we propose a new neural network structure for extracting a comprehension sequence embedding by handling the entire representation of the sequence. Unlike previous works that put attention mechanism after all steps of GRU, we add the entire representation to the input of the GRU which means the GRU model takes the entire information of the sequence into consideration in every step. We provide three various strategies to adding the entire information which are the Convolutional Neural Network~(CNN) based attentive GRU~(CBAG), the GRU inner attentive GRU~(GIAG) and the pre-trained GRU inner attentive GRU~(Pre-GIAG). To evaluate our proposed methods, we conduct extensive experiments on a benchmark sentiment classification dataset. Our experimental results show that our models outperform state-of-the-art baselines significantly.","PeriodicalId":193631,"journal":{"name":"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3234944.3234947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Recurrent Neural Networks~(RNNs), such as Long Short-Term Memory~(LSTM) and Gated Recurrent Unit~(GRU), have been widely utilized in sequence representation. However, RNNs neglect variational information and long-term dependency. In this paper, we propose a new neural network structure for extracting a comprehension sequence embedding by handling the entire representation of the sequence. Unlike previous works that put attention mechanism after all steps of GRU, we add the entire representation to the input of the GRU which means the GRU model takes the entire information of the sequence into consideration in every step. We provide three various strategies to adding the entire information which are the Convolutional Neural Network~(CNN) based attentive GRU~(CBAG), the GRU inner attentive GRU~(GIAG) and the pre-trained GRU inner attentive GRU~(Pre-GIAG). To evaluate our proposed methods, we conduct extensive experiments on a benchmark sentiment classification dataset. Our experimental results show that our models outperform state-of-the-art baselines significantly.
文本表示的全信息关注GRU
递归神经网络(rnn),如长短期记忆(LSTM)和门控递归单元(GRU),在序列表示中得到了广泛的应用。然而,rnn忽略了变分信息和长期依赖。在本文中,我们提出了一种新的神经网络结构,通过处理序列的整个表示来提取理解序列嵌入。与以往将注意力机制放在GRU所有步骤之后的工作不同,我们将整个表示添加到GRU的输入中,这意味着GRU模型在每一步都考虑了序列的整个信息。本文提出了基于卷积神经网络(CNN)的关注GRU~(CBAG)、GRU内部关注GRU~(GIAG)和预训练GRU内部关注GRU~(Pre-GIAG)三种不同的全信息添加策略。为了评估我们提出的方法,我们在基准情绪分类数据集上进行了广泛的实验。我们的实验结果表明,我们的模型明显优于最先进的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信