{"title":"Dynamic Response of a Large-Diameter Monopile Considering 35-Hour Storm Conditions","authors":"E. Bachynski, A. Page, G. Katsikogiannis","doi":"10.1115/omae2019-95170","DOIUrl":null,"url":null,"abstract":"\n As a part of the assessment of foundation resistance for monopiles, several offshore wind standards prescribe symmetric 35-hour (or 42-hour) storm sequences in terms of wind speed and significant wave height. The temporal evolution of the peak period is not specified explicitly in the standards, despite the fact that large monopile wind turbines are sensitive to the wave period. In the present work, the storm sequences according to the standards are first compared to hindcast data for intermediate water depth locations in the North Sea. An alternative storm sequence is proposed based on the hindcast data, and possible values of the peak period evolution are proposed for the standard models. The responses of a 10 MW monopile wind turbine are then computed for both the standard and proposed sequences using a time domain aero-hydro-servo-elastic code coupled to a macro element model for the soil-structure interaction. The resulting mudline load cycles are then compared for the different storm sequences.","PeriodicalId":306681,"journal":{"name":"Volume 10: Ocean Renewable Energy","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Ocean Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
As a part of the assessment of foundation resistance for monopiles, several offshore wind standards prescribe symmetric 35-hour (or 42-hour) storm sequences in terms of wind speed and significant wave height. The temporal evolution of the peak period is not specified explicitly in the standards, despite the fact that large monopile wind turbines are sensitive to the wave period. In the present work, the storm sequences according to the standards are first compared to hindcast data for intermediate water depth locations in the North Sea. An alternative storm sequence is proposed based on the hindcast data, and possible values of the peak period evolution are proposed for the standard models. The responses of a 10 MW monopile wind turbine are then computed for both the standard and proposed sequences using a time domain aero-hydro-servo-elastic code coupled to a macro element model for the soil-structure interaction. The resulting mudline load cycles are then compared for the different storm sequences.