{"title":"Dyakonov Surface Waves at the Interface between Porous Nanocomposite and Hypercrystal","authors":"I. Fedorin","doi":"10.1109/MMET.2018.8460289","DOIUrl":null,"url":null,"abstract":"In this paper, dispersion properties of hybrid Dyakonov surface waves at the plane interface between a nanocomposite made of a semiconductor inclusions distributed in a transparent matrix and a hypercrystal, formed by an alternating dielectric and hyperbolic layers are studied. Electrodynamic Maxwell-Garnett model was applied to simulate the effective resonance permittivity of the nanocomposite. The hypercrystal is considered in the subwavelength approximation as a uniaxial media with two different principal permittivity tensor components. It is shown, that by properly choosing the physical and geometrical parameters of the contacting composites, like the volume fractions of nano-inclusions, hyperbolic and dielectric layers inside hypercrystal, the effective control over Dyakonov surface waves angular range as well as penetration depth is possible. The influence of dissipations is evaluated numerically.","PeriodicalId":343933,"journal":{"name":"2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.2018.8460289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, dispersion properties of hybrid Dyakonov surface waves at the plane interface between a nanocomposite made of a semiconductor inclusions distributed in a transparent matrix and a hypercrystal, formed by an alternating dielectric and hyperbolic layers are studied. Electrodynamic Maxwell-Garnett model was applied to simulate the effective resonance permittivity of the nanocomposite. The hypercrystal is considered in the subwavelength approximation as a uniaxial media with two different principal permittivity tensor components. It is shown, that by properly choosing the physical and geometrical parameters of the contacting composites, like the volume fractions of nano-inclusions, hyperbolic and dielectric layers inside hypercrystal, the effective control over Dyakonov surface waves angular range as well as penetration depth is possible. The influence of dissipations is evaluated numerically.