Semi-discrete matrix transforms (SDD) for image and video compression

Sacha Zyto, A. Grama, W. Szpankowski
{"title":"Semi-discrete matrix transforms (SDD) for image and video compression","authors":"Sacha Zyto, A. Grama, W. Szpankowski","doi":"10.1109/DCC.2002.1000027","DOIUrl":null,"url":null,"abstract":"Summary form only given. A wide variety of matrix transforms have been used for compression of image and video data. Transforms have also been used for motion estimation and quantization. One such transform is the singular-value decomposition (SVD) that relies on low rank approximations of the matrix for computational and storage efficiency. In this study, we describe the use of a variant of SVD in image and video compression. This variant, first proposed by Peleg and O'Leary, called semidiscrete decomposition (SDD), restricts the elements of the outer product vectors to 0/1/-1. Thus approximations of much higher rank can be stored for the same amount of storage. We demonstrate the superiority of SDD over SVD for a variety of compression schemes. We also show that DCT-based compression is still superior to SDD-based compression. We also demonstrate that SDD facilitates fast and accurate pattern matching and motion estimation; thus presenting excellent opportunities for improved compression.","PeriodicalId":420897,"journal":{"name":"Proceedings DCC 2002. Data Compression Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC 2002. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2002.1000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Summary form only given. A wide variety of matrix transforms have been used for compression of image and video data. Transforms have also been used for motion estimation and quantization. One such transform is the singular-value decomposition (SVD) that relies on low rank approximations of the matrix for computational and storage efficiency. In this study, we describe the use of a variant of SVD in image and video compression. This variant, first proposed by Peleg and O'Leary, called semidiscrete decomposition (SDD), restricts the elements of the outer product vectors to 0/1/-1. Thus approximations of much higher rank can be stored for the same amount of storage. We demonstrate the superiority of SDD over SVD for a variety of compression schemes. We also show that DCT-based compression is still superior to SDD-based compression. We also demonstrate that SDD facilitates fast and accurate pattern matching and motion estimation; thus presenting excellent opportunities for improved compression.
半离散矩阵变换(SDD)用于图像和视频压缩
只提供摘要形式。各种各样的矩阵变换已被用于图像和视频数据的压缩。变换也被用于运动估计和量化。其中一种变换是奇异值分解(SVD),它依赖于矩阵的低秩近似来提高计算和存储效率。在这项研究中,我们描述了SVD在图像和视频压缩中的一种变体的使用。这种变体首先由Peleg和O'Leary提出,称为半离散分解(SDD),它将外积向量的元素限制为0/1/-1。因此,对于相同的存储量,可以存储更高等级的近似值。我们证明了SDD优于SVD的各种压缩方案。我们还表明,基于dct的压缩仍然优于基于sdd的压缩。我们还证明了SDD有助于快速准确的模式匹配和运动估计;因此,为改进压缩提供了极好的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信