Lillian Chin, J. Lipton, R. MacCurdy, John Romanishin, Chetan Sharma, D. Rus
{"title":"Compliant electric actuators based on handed shearing auxetics","authors":"Lillian Chin, J. Lipton, R. MacCurdy, John Romanishin, Chetan Sharma, D. Rus","doi":"10.1109/ROBOSOFT.2018.8404904","DOIUrl":null,"url":null,"abstract":"In this paper, we explore a new class of electric motor-driven compliant actuators based on handed shearing auxetic cylinders. This technique combines the benefits of compliant bodies from soft robotic actuators with the simplicity of direct coupling to electric motors. We demonstrate the effectiveness of this technique by creating linear actuators, a four degree-of-freedom robotic platform, and a soft robotic gripper. We compare the soft robotic gripper against a state of the art pneumatic soft gripper, finding similar grasping performance in a significantly smaller and more energy-efficient package.","PeriodicalId":306255,"journal":{"name":"2018 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOSOFT.2018.8404904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
In this paper, we explore a new class of electric motor-driven compliant actuators based on handed shearing auxetic cylinders. This technique combines the benefits of compliant bodies from soft robotic actuators with the simplicity of direct coupling to electric motors. We demonstrate the effectiveness of this technique by creating linear actuators, a four degree-of-freedom robotic platform, and a soft robotic gripper. We compare the soft robotic gripper against a state of the art pneumatic soft gripper, finding similar grasping performance in a significantly smaller and more energy-efficient package.