The FAST architecture: a neural network with flexible adaptable-size topology

A. Perez, E. Sánchez
{"title":"The FAST architecture: a neural network with flexible adaptable-size topology","authors":"A. Perez, E. Sánchez","doi":"10.1109/MNNFS.1996.493812","DOIUrl":null,"url":null,"abstract":"One of the central problems in the application of neural networks is finding the optimal network topology. This paper introduces the FAST architecture (flexible adaptable-size topology), an on-line, evolving neural network that dynamically adapts its topology through interactions with a problem-specific environment. We present a fully digital implementation of the network and demonstrate its viability on a pattern clustering task. We believe the FAST architecture holds potential by offering a fast, flexible platform for neural network applications.","PeriodicalId":151891,"journal":{"name":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNNFS.1996.493812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

One of the central problems in the application of neural networks is finding the optimal network topology. This paper introduces the FAST architecture (flexible adaptable-size topology), an on-line, evolving neural network that dynamically adapts its topology through interactions with a problem-specific environment. We present a fully digital implementation of the network and demonstrate its viability on a pattern clustering task. We believe the FAST architecture holds potential by offering a fast, flexible platform for neural network applications.
FAST架构:一个具有灵活可适应大小拓扑结构的神经网络
神经网络应用的核心问题之一是寻找最优网络拓扑。本文介绍了FAST体系结构(灵活的可适应大小的拓扑结构),这是一种在线的、不断进化的神经网络,它通过与特定问题环境的交互来动态地适应其拓扑结构。我们提出了一个完全数字化的网络实现,并证明了它在模式集群任务上的可行性。我们相信FAST架构通过为神经网络应用提供快速、灵活的平台而具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信