e-G2C: A 0.14-to-8.31 µJ/Inference NN-based Processor with Continuous On-chip Adaptation for Anomaly Detection and ECG Conversion from EGM

Yang Zhao, Yongan Zhang, Yonggan Fu, Xuefeng Ouyang, Cheng Wan, Shang Wu, Anton Banta, M. John, A. Post, M. Razavi, Joseph R. Cavallaro, B. Aazhang, Yingyan Lin
{"title":"e-G2C: A 0.14-to-8.31 µJ/Inference NN-based Processor with Continuous On-chip Adaptation for Anomaly Detection and ECG Conversion from EGM","authors":"Yang Zhao, Yongan Zhang, Yonggan Fu, Xuefeng Ouyang, Cheng Wan, Shang Wu, Anton Banta, M. John, A. Post, M. Razavi, Joseph R. Cavallaro, B. Aazhang, Yingyan Lin","doi":"10.1109/VLSITechnologyandCir46769.2022.9830335","DOIUrl":null,"url":null,"abstract":"This work presents the first silicon-validated dedicated EGM-to-ECG (G2C) processor, dubbed e-G2C, featuring continuous lightweight anomaly detection, event-driven coarse/precise conversion, and on-chip adaptation. e-G2C utilizes neural network (NN) based G2C conversion and integrates 1) an architecture supporting anomaly detection and coarse/precise conversion via time multiplexing to balance the effectiveness and power, 2) an algorithm-hardware co-designed vector-wise sparsity resulting in a 1.6-1.7× speedup, 3) hybrid dataflows for enhancing near 100% utilization for normal/depth-wise(DW)/point-wise(PW) convolutions (Convs), and 4) an on-chip detection threshold adaptation engine for continuous effectiveness. The achieved 0.14-8.31 µJ/inference energy efficiency outperforms prior arts under similar complexity, promising real-time detection/conversion and possibly life-critical interventions.","PeriodicalId":332454,"journal":{"name":"2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work presents the first silicon-validated dedicated EGM-to-ECG (G2C) processor, dubbed e-G2C, featuring continuous lightweight anomaly detection, event-driven coarse/precise conversion, and on-chip adaptation. e-G2C utilizes neural network (NN) based G2C conversion and integrates 1) an architecture supporting anomaly detection and coarse/precise conversion via time multiplexing to balance the effectiveness and power, 2) an algorithm-hardware co-designed vector-wise sparsity resulting in a 1.6-1.7× speedup, 3) hybrid dataflows for enhancing near 100% utilization for normal/depth-wise(DW)/point-wise(PW) convolutions (Convs), and 4) an on-chip detection threshold adaptation engine for continuous effectiveness. The achieved 0.14-8.31 µJ/inference energy efficiency outperforms prior arts under similar complexity, promising real-time detection/conversion and possibly life-critical interventions.
e-G2C:一种0.14- 8.31µJ/Inference基于神经网络的连续片上自适应处理器,用于异常检测和ECG转换
这项工作提出了第一个经过硅验证的专用egm到ecg (G2C)处理器,称为e-G2C,具有连续轻量级异常检测,事件驱动的粗/精确转换和片上适应功能。e-G2C利用基于神经网络(NN)的G2C转换,并集成了1)支持异常检测和通过时间复用进行粗/精确转换的架构,以平衡效率和功率;2)算法-硬件协同设计的矢量稀疏性,从而实现1.6-1.7倍的加速;3)混合数据流,可将正常/深度/点卷积(Convs)的利用率提高近100%。4)片上检测阈值自适应引擎,实现持续有效性。所实现的0.14-8.31 μ J/推理能量效率在类似复杂性下优于现有技术,有望实现实时检测/转换,并可能实现生命关键干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信