Explaining Black Box Models Through Twin Systems

Federico Maria Cau
{"title":"Explaining Black Box Models Through Twin Systems","authors":"Federico Maria Cau","doi":"10.1145/3379336.3381511","DOIUrl":null,"url":null,"abstract":"This paper presents the early stages of my PhD research aiming at advancing the field of eXplainable AI (XAI) investigating the twinsystems, where an uninterpretable black-box model is twinned with a white-box one, usually less accurate but more inspectable, to provide explanations to the classification results.We focus in particular on the twinning occurring between an Artificial Neural Network (ANN) and a Case-Based Reasoning (CBR) system, so-called ANNCBR twins, to explain the predictions in a post-hoc manner taking account of (i) a feature-weighting method for mirroring the ANN results in the CBR, (ii) a set of evaluation metrics that correlate the ANN to other white/grey models supporting explanations for users, (iii) a taxonomy of methods for generating explanations from the twinning for the neural network's predictions.","PeriodicalId":335081,"journal":{"name":"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3379336.3381511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the early stages of my PhD research aiming at advancing the field of eXplainable AI (XAI) investigating the twinsystems, where an uninterpretable black-box model is twinned with a white-box one, usually less accurate but more inspectable, to provide explanations to the classification results.We focus in particular on the twinning occurring between an Artificial Neural Network (ANN) and a Case-Based Reasoning (CBR) system, so-called ANNCBR twins, to explain the predictions in a post-hoc manner taking account of (i) a feature-weighting method for mirroring the ANN results in the CBR, (ii) a set of evaluation metrics that correlate the ANN to other white/grey models supporting explanations for users, (iii) a taxonomy of methods for generating explanations from the twinning for the neural network's predictions.
通过双系统解释黑匣子模型
本文介绍了我博士研究的早期阶段,旨在推进可解释人工智能(XAI)领域的研究,研究孪生系统,其中一个不可解释的黑箱模型与一个白盒模型相结合,通常不太准确,但更可检查,为分类结果提供解释。我们特别关注人工神经网络(ANN)和基于案例的推理(CBR)系统之间发生的双胞胎,即所谓的ANNCBR双胞胎,以事后方式解释预测,考虑到(i)在CBR中镜像人工神经网络结果的特征加权方法,(ii)将人工神经网络与其他支持用户解释的白色/灰色模型相关联的一组评估指标。(iii)为神经网络的预测从双胞胎中生成解释的方法分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信