Redundant time-frequency marginals for chirplet decomposition

L. Weruaga
{"title":"Redundant time-frequency marginals for chirplet decomposition","authors":"L. Weruaga","doi":"10.1109/MLSP.2012.6349775","DOIUrl":null,"url":null,"abstract":"This paper presents the foundations of a novel method for chirplet signal decomposition. In contrast to basis-pursuit techniques on over-complete dictionaries, the proposed method uses a reduced set of adaptive parametric chirplets. The estimation criterion corresponds to the maximization of the likelihood of the chirplet parameters from redundant time-frequency marginals. The optimization algorithm that results from this scenario combines Gaussian mixture models and Huber's robust regression in an iterative fashion. Simulation results support the proposed avenue.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents the foundations of a novel method for chirplet signal decomposition. In contrast to basis-pursuit techniques on over-complete dictionaries, the proposed method uses a reduced set of adaptive parametric chirplets. The estimation criterion corresponds to the maximization of the likelihood of the chirplet parameters from redundant time-frequency marginals. The optimization algorithm that results from this scenario combines Gaussian mixture models and Huber's robust regression in an iterative fashion. Simulation results support the proposed avenue.
啁啾分解的冗余时频边际
本文提出了一种新的小波信号分解方法的基础。与基于过完备字典的基追踪技术相比,该方法使用了一组简化的自适应参数小波。估计准则对应于从冗余时频边缘得到的啁啾参数的最大似然。这种情况下产生的优化算法以迭代的方式结合了高斯混合模型和Huber的鲁棒回归。仿真结果支持该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信