A Self-Adaptive Trust Region Algorithm with Line Search Technique

Wenjuan Wu, Lanping Chen, B. Jiao
{"title":"A Self-Adaptive Trust Region Algorithm with Line Search Technique","authors":"Wenjuan Wu, Lanping Chen, B. Jiao","doi":"10.1109/CSO.2010.25","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an algorithm for unconstrained optimization that employs both adaptive trust region techniques with line searchs. Unlike traditional adaptive trust region methods, our algorithm does not resolve the sub problem if the trial step isn’t accepted, but instead performs the Wolfe line search at each iteration. Under mild conditions, the global convergence is proved and the super linear convergence of the new algorithm is shown without the condition that the Hessian of the objective function at the solution be positive definite. Preliminary numerical results indicate that the performance of the new method is very efficient.","PeriodicalId":427481,"journal":{"name":"2010 Third International Joint Conference on Computational Science and Optimization","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Joint Conference on Computational Science and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2010.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose an algorithm for unconstrained optimization that employs both adaptive trust region techniques with line searchs. Unlike traditional adaptive trust region methods, our algorithm does not resolve the sub problem if the trial step isn’t accepted, but instead performs the Wolfe line search at each iteration. Under mild conditions, the global convergence is proved and the super linear convergence of the new algorithm is shown without the condition that the Hessian of the objective function at the solution be positive definite. Preliminary numerical results indicate that the performance of the new method is very efficient.
基于线搜索技术的自适应信赖域算法
在本文中,我们提出了一种无约束优化算法,该算法采用自适应信赖域技术和直线搜索。与传统的自适应信任域方法不同,该算法在不接受试步时不解决子问题,而是在每次迭代时进行沃尔夫线搜索。在温和条件下,证明了新算法的全局收敛性和超线性收敛性,而不需要目标函数在解处的Hessian为正定。初步的数值结果表明,新方法的性能是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信