Analytics-as-a-Service (AaaS) Tool for Unstructured Data Mining

Richard K. Lomotey, R. Deters
{"title":"Analytics-as-a-Service (AaaS) Tool for Unstructured Data Mining","authors":"Richard K. Lomotey, R. Deters","doi":"10.1109/IC2E.2014.15","DOIUrl":null,"url":null,"abstract":"Analytics-as-a-Service (AaaS) has become indispensable because it affords stakeholders to discover knowledge in Big Data. Previously, data stored in data warehouses follow some schema and standardization which leads to efficient data mining. However, the \"Big Data\" epoch has witnessed the rise of structured, semi-structured, and unstructured data, a trend that motivated enterprises to employ the NoSQL data storages to accommodate the high-dimensional data. In this paper, we introduce an AaaS tool that aims at accomplishing terms and topics extraction and organization from unstructured data sources such as NoSQL databases and textual contents (e.g., websites). The primary accomplishment in this paper is the detail justification of the architectural design of our proposed framework. This includes the proposed algorithms (e.g., concurrency search, linear search, etc.) and the performance of macro tasks such as filtering, tagging, and so on.","PeriodicalId":273902,"journal":{"name":"2014 IEEE International Conference on Cloud Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Cloud Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2E.2014.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Analytics-as-a-Service (AaaS) has become indispensable because it affords stakeholders to discover knowledge in Big Data. Previously, data stored in data warehouses follow some schema and standardization which leads to efficient data mining. However, the "Big Data" epoch has witnessed the rise of structured, semi-structured, and unstructured data, a trend that motivated enterprises to employ the NoSQL data storages to accommodate the high-dimensional data. In this paper, we introduce an AaaS tool that aims at accomplishing terms and topics extraction and organization from unstructured data sources such as NoSQL databases and textual contents (e.g., websites). The primary accomplishment in this paper is the detail justification of the architectural design of our proposed framework. This includes the proposed algorithms (e.g., concurrency search, linear search, etc.) and the performance of macro tasks such as filtering, tagging, and so on.
非结构化数据挖掘的分析即服务(AaaS)工具
分析即服务(AaaS)已经变得不可或缺,因为它为利益相关者提供了在大数据中发现知识的机会。以前,存储在数据仓库中的数据遵循一些模式和标准化,从而实现高效的数据挖掘。然而,“大数据”时代见证了结构化、半结构化和非结构化数据的兴起,这一趋势促使企业采用NoSQL数据存储来容纳高维数据。在本文中,我们介绍了一个AaaS工具,旨在从非结构化数据源(如NoSQL数据库和文本内容(如网站))中完成术语和主题的提取和组织。本文的主要成果是对我们提出的框架的体系结构设计进行了详细的论证。这包括提出的算法(例如,并发搜索、线性搜索等)和宏任务的性能,例如过滤、标记等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信