A Learning-based Eye Detector Coupled with Eye Candidate Filtering and PCA Features

B. B. Leite, E. Pereira, H. Gomes, L. Veloso, C. E. D. N. Santos, J. Carvalho
{"title":"A Learning-based Eye Detector Coupled with Eye Candidate Filtering and PCA Features","authors":"B. B. Leite, E. Pereira, H. Gomes, L. Veloso, C. E. D. N. Santos, J. Carvalho","doi":"10.1109/SIBGRAPI.2007.44","DOIUrl":null,"url":null,"abstract":"In this work, we present a system based on a Neural Network classifier for eye detection in human face images. This classifier works on eye candidate regions extracted from a face image and represented by a reduced number of features, selected by Principal Component Analysis. The regions are determined considering that in an image window containing the eye, the grey level distribution will generally assume a pattern of adjacent light-dark-light horizontal and vertical stripes, corresponding to the eyelid, pupil and eyelid, respectively. For training, validation and testing, a database was built with a total of 4,400 images. Experimental results have shown that the proposed approach correctly detects more eyes than any of two existing systems (Rowley-Baluja-Kanade and Machine Perception Toolbox), for eye location error tolerances from 0 to 5 pixels. Considering an error tolerance of 9 pixels, the correct detection rate achieved was above 90%.","PeriodicalId":434632,"journal":{"name":"XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2007.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this work, we present a system based on a Neural Network classifier for eye detection in human face images. This classifier works on eye candidate regions extracted from a face image and represented by a reduced number of features, selected by Principal Component Analysis. The regions are determined considering that in an image window containing the eye, the grey level distribution will generally assume a pattern of adjacent light-dark-light horizontal and vertical stripes, corresponding to the eyelid, pupil and eyelid, respectively. For training, validation and testing, a database was built with a total of 4,400 images. Experimental results have shown that the proposed approach correctly detects more eyes than any of two existing systems (Rowley-Baluja-Kanade and Machine Perception Toolbox), for eye location error tolerances from 0 to 5 pixels. Considering an error tolerance of 9 pixels, the correct detection rate achieved was above 90%.
结合候选滤波和PCA特征的基于学习的眼部检测器
在这项工作中,我们提出了一个基于神经网络分类器的人脸图像眼睛检测系统。该分类器从人脸图像中提取眼睛候选区域,并通过主成分分析选择减少数量的特征来表示。区域的确定考虑到在包含眼睛的图像窗口中,灰度分布一般会呈现相邻的亮-暗-亮水平条纹和垂直条纹的模式,分别对应于眼睑、瞳孔和眼睑。为了训练、验证和测试,我们建立了一个包含4400张图像的数据库。实验结果表明,该方法比现有的两种系统(Rowley-Baluja-Kanade和Machine Perception Toolbox)正确地检测到更多的眼睛,眼睛定位误差容错范围为0到5个像素。考虑到9个像素的误差容限,实现的正确检测率在90%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信