A Polynomial-Division-Based Algorithm for Computing Linear Recurrence Relations

Jérémy Berthomieu, J. Faugère
{"title":"A Polynomial-Division-Based Algorithm for Computing Linear Recurrence Relations","authors":"Jérémy Berthomieu, J. Faugère","doi":"10.1145/3208976.3209017","DOIUrl":null,"url":null,"abstract":"Sparse polynomial interpolation, sparse linear system solving or modular rational reconstruction are fundamental problems in Computer Algebra. They come down to computing linear recurrence relations of a sequence with the Berlekamp--Massey algorithm. Likewise, sparse multivariate polynomial interpolation and multidimensional cyclic code decoding require guessing linear recurrence relations of a multivariate sequence. Several algorithms solve this problem. The so-called Berlekamp--Massey--Sakata algorithm (1988) uses polynomial additions and shifts by a monomial. The Scalar-FGLM algorithm (2015) relies on linear algebra operations on a multi-Hankel matrix, a multivariate generalization of a Hankel matrix. The Artinian Gorenstein border basis algorithm (2017) uses a Gram-Schmidt process. We propose a new algorithm for computing the Gröbner basis of the ideal of relations of a sequence based solely on multivariate polynomial arithmetic. This algorithm allows us to both revisit the Berlekamp--Massey--Sakata algorithm through the use of polynomial divisions and to completely revise the Scalar-FGLM algorithm without linear algebra operations. A key observation in the design of this algorithm is to work on the mirror of the truncated generating series allowing us to use polynomial arithmetic modulo a monomial ideal. It appears to have some similarities with Padé approximants of this mirror polynomial. Finally, we give a partial solution to the transformation of this algorithm into an adaptive one.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3209017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sparse polynomial interpolation, sparse linear system solving or modular rational reconstruction are fundamental problems in Computer Algebra. They come down to computing linear recurrence relations of a sequence with the Berlekamp--Massey algorithm. Likewise, sparse multivariate polynomial interpolation and multidimensional cyclic code decoding require guessing linear recurrence relations of a multivariate sequence. Several algorithms solve this problem. The so-called Berlekamp--Massey--Sakata algorithm (1988) uses polynomial additions and shifts by a monomial. The Scalar-FGLM algorithm (2015) relies on linear algebra operations on a multi-Hankel matrix, a multivariate generalization of a Hankel matrix. The Artinian Gorenstein border basis algorithm (2017) uses a Gram-Schmidt process. We propose a new algorithm for computing the Gröbner basis of the ideal of relations of a sequence based solely on multivariate polynomial arithmetic. This algorithm allows us to both revisit the Berlekamp--Massey--Sakata algorithm through the use of polynomial divisions and to completely revise the Scalar-FGLM algorithm without linear algebra operations. A key observation in the design of this algorithm is to work on the mirror of the truncated generating series allowing us to use polynomial arithmetic modulo a monomial ideal. It appears to have some similarities with Padé approximants of this mirror polynomial. Finally, we give a partial solution to the transformation of this algorithm into an adaptive one.
一种基于多项式除法的线性递归关系计算算法
稀疏多项式插值、稀疏线性系统求解或模有理重构是计算机代数中的基本问题。它们归结为用Berlekamp- Massey算法计算序列的线性递归关系。同样,稀疏多元多项式插值和多维循环码解码也需要猜测多元序列的线性递归关系。有几种算法可以解决这个问题。所谓的Berlekamp- Massey- Sakata算法(1988)使用多项式加法和单项式移位。scale - fglm算法(2015)依赖于多汉克尔矩阵的线性代数运算,这是汉克尔矩阵的多元推广。Artinian Gorenstein边界基算法(2017)使用Gram-Schmidt过程。本文提出了一种基于多元多项式算法的计算序列关系理想的Gröbner基的新算法。该算法允许我们通过使用多项式除法来重新审视Berlekamp- Massey- Sakata算法,并在没有线性代数操作的情况下完全修改Scalar-FGLM算法。该算法设计中的一个关键观察是在截断的生成序列的镜像上工作,允许我们使用多项式算术模一个单项式理想。它似乎与这个镜像多项式的帕德帕近似有一些相似之处。最后,给出了将该算法转化为自适应算法的部分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信