Change detection from SAR images based on deformable residual convolutional neural networks

Junjie Wang, Feng Gao, Junyu Dong
{"title":"Change detection from SAR images based on deformable residual convolutional neural networks","authors":"Junjie Wang, Feng Gao, Junyu Dong","doi":"10.1145/3444685.3446320","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNN) have made great progress for synthetic aperture radar (SAR) images change detection. However, sampling locations of traditional convolutional kernels are fixed and cannot be changed according to the actual structure of the SAR images. Besides, objects may appear with different sizes in natural scenes, which requires the network to have stronger multi-scale representation ability. In this paper, a novel Deformable Residual Convolutional Neural Network (DRNet) is designed for SAR images change detection. First, the proposed DRNet introduces the deformable convolutional sampling locations, and the shape of convolutional kernel can be adaptively adjusted according to the actual structure of ground objects. To create the deformable sampling locations, 2-D offsets are calculated for each pixel according to the spatial information of the input images. Then the sampling location of pixels can adaptively reflect the spatial structure of the input images. Moreover, we proposed a novel pooling module replacing the vanilla pooling to utilize multi-scale information effectively, by constructing hierarchical residual-like connections within one pooling layer, which improve the multi-scale representation ability at a granular level. Experimental results on three real SAR datasets demonstrate the effectiveness of the proposed DR-Net.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Convolutional neural networks (CNN) have made great progress for synthetic aperture radar (SAR) images change detection. However, sampling locations of traditional convolutional kernels are fixed and cannot be changed according to the actual structure of the SAR images. Besides, objects may appear with different sizes in natural scenes, which requires the network to have stronger multi-scale representation ability. In this paper, a novel Deformable Residual Convolutional Neural Network (DRNet) is designed for SAR images change detection. First, the proposed DRNet introduces the deformable convolutional sampling locations, and the shape of convolutional kernel can be adaptively adjusted according to the actual structure of ground objects. To create the deformable sampling locations, 2-D offsets are calculated for each pixel according to the spatial information of the input images. Then the sampling location of pixels can adaptively reflect the spatial structure of the input images. Moreover, we proposed a novel pooling module replacing the vanilla pooling to utilize multi-scale information effectively, by constructing hierarchical residual-like connections within one pooling layer, which improve the multi-scale representation ability at a granular level. Experimental results on three real SAR datasets demonstrate the effectiveness of the proposed DR-Net.
基于可变形残差卷积神经网络的SAR图像变化检测
卷积神经网络(CNN)在合成孔径雷达(SAR)图像变化检测方面取得了很大进展。然而,传统卷积核的采样位置是固定的,不能根据SAR图像的实际结构进行改变。此外,在自然场景中,物体可能会以不同的大小出现,这就要求网络具有更强的多尺度表示能力。本文设计了一种用于SAR图像变化检测的可变形残差卷积神经网络(DRNet)。首先,本文提出的DRNet引入了可变形的卷积采样位置,卷积核的形状可以根据地物的实际结构自适应调整。为了创建可变形的采样位置,根据输入图像的空间信息计算每个像素的二维偏移量。然后像素的采样位置可以自适应地反映输入图像的空间结构。此外,我们提出了一种新的池化模块,通过在一个池化层内构建分层的类残差连接,有效地利用了多尺度信息,提高了在粒度级别上的多尺度表示能力。在三个真实SAR数据集上的实验结果验证了该网络的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信