Simple Hierarchical Multi-Task Neural End-To-End Entity Linking for Biomedical Text

Maciej Wiatrak, Juha Iso-Sipilä
{"title":"Simple Hierarchical Multi-Task Neural End-To-End Entity Linking for Biomedical Text","authors":"Maciej Wiatrak, Juha Iso-Sipilä","doi":"10.18653/v1/2020.louhi-1.2","DOIUrl":null,"url":null,"abstract":"Recognising and linking entities is a crucial first step to many tasks in biomedical text analysis, such as relation extraction and target identification. Traditionally, biomedical entity linking methods rely heavily on heuristic rules and predefined, often domain-specific features. The features try to capture the properties of entities and complex multi-step architectures to detect, and subsequently link entity mentions. We propose a significant simplification to the biomedical entity linking setup that does not rely on any heuristic methods. The system performs all the steps of the entity linking task jointly in either single or two stages. We explore the use of hierarchical multi-task learning, using mention recognition and entity typing tasks as auxiliary tasks. We show that hierarchical multi-task models consistently outperform single-task models when trained tasks are homogeneous. We evaluate the performance of our models on the biomedical entity linking benchmarks using MedMentions and BC5CDR datasets. We achieve state-of-theart results on the challenging MedMentions dataset, and comparable results on BC5CDR.","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"405 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Health Text Mining and Information Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.louhi-1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Recognising and linking entities is a crucial first step to many tasks in biomedical text analysis, such as relation extraction and target identification. Traditionally, biomedical entity linking methods rely heavily on heuristic rules and predefined, often domain-specific features. The features try to capture the properties of entities and complex multi-step architectures to detect, and subsequently link entity mentions. We propose a significant simplification to the biomedical entity linking setup that does not rely on any heuristic methods. The system performs all the steps of the entity linking task jointly in either single or two stages. We explore the use of hierarchical multi-task learning, using mention recognition and entity typing tasks as auxiliary tasks. We show that hierarchical multi-task models consistently outperform single-task models when trained tasks are homogeneous. We evaluate the performance of our models on the biomedical entity linking benchmarks using MedMentions and BC5CDR datasets. We achieve state-of-theart results on the challenging MedMentions dataset, and comparable results on BC5CDR.
生物医学文本的简单分层多任务神经端到端实体链接
识别和链接实体是生物医学文本分析中许多任务至关重要的第一步,例如关系提取和目标识别。传统上,生物医学实体链接方法严重依赖启发式规则和预定义的,通常是特定于领域的特征。这些特征试图捕获实体的属性和复杂的多步骤架构来检测,并随后链接实体提及。我们提出了一个重要的简化生物医学实体链接设置,不依赖于任何启发式方法。系统在单个或两个阶段中联合执行实体链接任务的所有步骤。我们探索了分层多任务学习的使用,使用提及识别和实体输入任务作为辅助任务。我们表明,当训练的任务是同质的时,分层多任务模型始终优于单任务模型。我们使用medmention和BC5CDR数据集评估了我们的模型在生物医学实体链接基准上的性能。我们在具有挑战性的medmention数据集上取得了最先进的结果,并在BC5CDR上取得了可比较的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信