Itô’s Excursion Theory, the Hurst Coefficient, and Fractional Excursions in Finance

Paitoon Wongsasutthikul, C. Turvey
{"title":"Itô’s Excursion Theory, the Hurst Coefficient, and Fractional Excursions in Finance","authors":"Paitoon Wongsasutthikul, C. Turvey","doi":"10.2139/ssrn.2034472","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate how Ito’s excursion theory can be usefully applied to economic time series data (Ito 2007). We relate excursion theory to geometric and fractional Brownian motion and the Hurst coefficient. We then calculate the Hurst coefficient for all stocks on the DOW 30, S&P 500 and Russell 2000, showing the distribution of Hurst measures and relating them statistically to excursions. In doing so we provide a nice and intuitive link between Brownian motion and excursions, an application and consequence that we have not seen before.","PeriodicalId":242545,"journal":{"name":"ERN: Econometric Studies of Capital Markets (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Econometric Studies of Capital Markets (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2034472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate how Ito’s excursion theory can be usefully applied to economic time series data (Ito 2007). We relate excursion theory to geometric and fractional Brownian motion and the Hurst coefficient. We then calculate the Hurst coefficient for all stocks on the DOW 30, S&P 500 and Russell 2000, showing the distribution of Hurst measures and relating them statistically to excursions. In doing so we provide a nice and intuitive link between Brownian motion and excursions, an application and consequence that we have not seen before.
Itô的漂移理论,赫斯特系数,和分数漂移在金融
在本文中,我们研究了Ito的偏移理论如何有效地应用于经济时间序列数据(Ito 2007)。我们将偏移理论与几何和分数布朗运动以及赫斯特系数联系起来。然后,我们计算了道琼斯30指数、标准普尔500指数和罗素2000指数上所有股票的赫斯特系数,显示了赫斯特度量的分布,并将它们与偏差统计联系起来。这样一来,我们就在布朗运动和位移之间提供了一个很好的直观的联系,这是一个我们以前从未见过的应用和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信