S. Bhunia, Amitabh Das, Saverio Fazzari, V. Kammler, David Kehlet, J. Rajendran, Ankur Srivastava
{"title":"Hardware IP Protection against Confidentiality Attacks and Evolving Role of CAD Tool (Invited Paper)","authors":"S. Bhunia, Amitabh Das, Saverio Fazzari, V. Kammler, David Kehlet, J. Rajendran, Ankur Srivastava","doi":"10.1145/3508352.3561103","DOIUrl":null,"url":null,"abstract":"With growing use of hardware intellectual property (IP) based integrated circuits (IC) design and increasing reliance on a globalized supply chain, the threats to confidentiality of hardware IPs have emerged as major security concerns to the IP producers and owners. These threats are diverse, including reverse engineering (RE), piracy, cloning, and extraction of design secrets, and span different phases of electronics life cycle. The academic research community and the semiconductor industry have made significant efforts over the past decade on developing effective methodologies and CAD tools targeted to protect hardware IPs against these threats. These solutions include watermarking, logic locking, obfuscation, camouflaging, split manufacturing, and hardware redaction. This paper focuses on key topics on confidentiality of hardware IPs encompassing the major threats, protection approaches, security analysis, and metrics. It discusses the strengths and limitations of the major solutions in protecting hardware IPs against the confidentiality attacks, and future directions to address the limitations in the modern supply chain ecosystem.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3561103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With growing use of hardware intellectual property (IP) based integrated circuits (IC) design and increasing reliance on a globalized supply chain, the threats to confidentiality of hardware IPs have emerged as major security concerns to the IP producers and owners. These threats are diverse, including reverse engineering (RE), piracy, cloning, and extraction of design secrets, and span different phases of electronics life cycle. The academic research community and the semiconductor industry have made significant efforts over the past decade on developing effective methodologies and CAD tools targeted to protect hardware IPs against these threats. These solutions include watermarking, logic locking, obfuscation, camouflaging, split manufacturing, and hardware redaction. This paper focuses on key topics on confidentiality of hardware IPs encompassing the major threats, protection approaches, security analysis, and metrics. It discusses the strengths and limitations of the major solutions in protecting hardware IPs against the confidentiality attacks, and future directions to address the limitations in the modern supply chain ecosystem.