Naoki Yamanari, T. Ohbu, Hiroaki Ito, S. Matsuyama
{"title":"Smaller size and higher reliability for vertical chip mounted type power device","authors":"Naoki Yamanari, T. Ohbu, Hiroaki Ito, S. Matsuyama","doi":"10.1109/THERMINIC.2016.7748647","DOIUrl":null,"url":null,"abstract":"This paper presents a new structure of the power device to reduce the size and improve the reliability. Our conventional device with vertical chip mounting is half size of the former device and we proposed a new one for further miniaturization and higher reliability. The proposed device with top and bottom surfaces cooling which allows higher power density is 30% smaller than our conventional one with only the bottom surface cooling. Also, to evaluate the reliability, the finite element analysis (FEA) of the thermal stress and the power cycle tests which are commonly used in evaluating the reliability were performed. The thermal stress of the proposed device can be reduced by 40%, and the power cycle test results showed the high reliability.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THERMINIC.2016.7748647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents a new structure of the power device to reduce the size and improve the reliability. Our conventional device with vertical chip mounting is half size of the former device and we proposed a new one for further miniaturization and higher reliability. The proposed device with top and bottom surfaces cooling which allows higher power density is 30% smaller than our conventional one with only the bottom surface cooling. Also, to evaluate the reliability, the finite element analysis (FEA) of the thermal stress and the power cycle tests which are commonly used in evaluating the reliability were performed. The thermal stress of the proposed device can be reduced by 40%, and the power cycle test results showed the high reliability.