Parallel evolution of communicating classifier systems

L. Bull, T. Fogarty
{"title":"Parallel evolution of communicating classifier systems","authors":"L. Bull, T. Fogarty","doi":"10.1109/ICEC.1994.349976","DOIUrl":null,"url":null,"abstract":"We present an architecture that allows the division of a search space and the parallel solution of the resulting sub-problems. We use multiple genetic algorithms to evolve communicating classifier systems, where each classifier system represents a sub-system of the complete task. Any communication is uninterpreted and emergent to the system, indicating structure and interdependence between the sub-problems. A simulated trail following task, with three communicating classifier systems, is used to demonstrate the approach and we compare its performance to that of an equivalent single classifier system responsible for the whole problem.<<ETX>>","PeriodicalId":393865,"journal":{"name":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","volume":"301 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1994.349976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We present an architecture that allows the division of a search space and the parallel solution of the resulting sub-problems. We use multiple genetic algorithms to evolve communicating classifier systems, where each classifier system represents a sub-system of the complete task. Any communication is uninterpreted and emergent to the system, indicating structure and interdependence between the sub-problems. A simulated trail following task, with three communicating classifier systems, is used to demonstrate the approach and we compare its performance to that of an equivalent single classifier system responsible for the whole problem.<>
通信分类系统的并行进化
我们提出了一种架构,允许划分搜索空间并并行解决由此产生的子问题。我们使用多种遗传算法来进化通信分类器系统,其中每个分类器系统代表完整任务的一个子系统。任何通信都是未经解释的,对系统来说都是紧急的,这表明了子问题之间的结构和相互依赖性。模拟轨迹跟踪任务,使用三个通信分类器系统,来演示该方法,并将其性能与负责整个问题的等效单个分类器系统的性能进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信