Optimizing retrieval process and using neural networks for adaptation process in case based reasoning systems

I. Lodhi, K. Hasan, U. Hasan, N. Mahmood, T. Yoshida, M. A. Anwar
{"title":"Optimizing retrieval process and using neural networks for adaptation process in case based reasoning systems","authors":"I. Lodhi, K. Hasan, U. Hasan, N. Mahmood, T. Yoshida, M. A. Anwar","doi":"10.1109/INMIC.2003.1416750","DOIUrl":null,"url":null,"abstract":"The retrieval process in case based reasoning systems (CBR) is a two-step process. It starts with a problem description and ends when a best matching previous case(s) has/have been retrieved. To optimize the retrieval process, enhancement of both processes is required. This research work explores the use of XML (Extensible Markup Language) as a case descriptive language. An additional goal is to identify factors which play a major role in the optimization process. This work also presents an experimental investigation concerning the use of artificial neural networks in the adaptation process of CBR systems. A backpropagation feedforward neural network in different configurations, has been employed to carry out empirical analysis of using this technique for case based adaptation.","PeriodicalId":253329,"journal":{"name":"7th International Multi Topic Conference, 2003. INMIC 2003.","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Multi Topic Conference, 2003. INMIC 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2003.1416750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The retrieval process in case based reasoning systems (CBR) is a two-step process. It starts with a problem description and ends when a best matching previous case(s) has/have been retrieved. To optimize the retrieval process, enhancement of both processes is required. This research work explores the use of XML (Extensible Markup Language) as a case descriptive language. An additional goal is to identify factors which play a major role in the optimization process. This work also presents an experimental investigation concerning the use of artificial neural networks in the adaptation process of CBR systems. A backpropagation feedforward neural network in different configurations, has been employed to carry out empirical analysis of using this technique for case based adaptation.
案例推理系统中检索过程的优化与神经网络自适应
基于案例推理系统(CBR)的检索过程分为两步。它以问题描述开始,并在检索到最匹配的先前案例时结束。为了优化检索过程,需要增强这两个过程。这项研究工作探索了XML(可扩展标记语言)作为case描述语言的使用。另一个目标是确定在优化过程中起主要作用的因素。本文还对人工神经网络在CBR系统自适应过程中的应用进行了实验研究。采用不同配置的反向传播前馈神经网络,对该技术在案例自适应中的应用进行了实证分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信