{"title":"Eye Feature Point Tracking by Using Graphical Models","authors":"S. Coşar, M. Qetin","doi":"10.1109/SIU.2007.4298738","DOIUrl":null,"url":null,"abstract":"In this paper, a statistical method for eye feature point tracking is proposed. The aim is to track feature points even when the observed data are uncertain because of noise and/or occlusion. With this motivation, a graphical model that uses the spatial information as well as the temporal information between points is built. The proposed method is applied on 2D grayscale real video sequences as a real data application.","PeriodicalId":315147,"journal":{"name":"2007 IEEE 15th Signal Processing and Communications Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 15th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2007.4298738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a statistical method for eye feature point tracking is proposed. The aim is to track feature points even when the observed data are uncertain because of noise and/or occlusion. With this motivation, a graphical model that uses the spatial information as well as the temporal information between points is built. The proposed method is applied on 2D grayscale real video sequences as a real data application.