An efficient parallel algorithm for solving the knapsack problem on the hypercube

A. Goldman, D. Trystram
{"title":"An efficient parallel algorithm for solving the knapsack problem on the hypercube","authors":"A. Goldman, D. Trystram","doi":"10.1109/IPPS.1997.580964","DOIUrl":null,"url":null,"abstract":"The authors present a new algorithm to solve the integral knapsack problem on the hypercube. The main idea is to use the fact that the precedence graph of the dynamic programming function of the knapsack problem is an irregular mesh. They propose a scheduling algorithm for irregular meshes on the hypercube. The efficiency of the algorithm is independent on the number of processors. They also present some improvements for the solution of the 0/1 knapsack problem on the hypercube.","PeriodicalId":145892,"journal":{"name":"Proceedings 11th International Parallel Processing Symposium","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1997.580964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The authors present a new algorithm to solve the integral knapsack problem on the hypercube. The main idea is to use the fact that the precedence graph of the dynamic programming function of the knapsack problem is an irregular mesh. They propose a scheduling algorithm for irregular meshes on the hypercube. The efficiency of the algorithm is independent on the number of processors. They also present some improvements for the solution of the 0/1 knapsack problem on the hypercube.
求解超立方体上背包问题的一种高效并行算法
提出了一种求解超立方体上的积分背包问题的新算法。其主要思想是利用背包问题动态规划函数的优先图是不规则网格的这一事实。他们提出了一种超立方体上不规则网格的调度算法。该算法的效率与处理器数量无关。对超立方体上0/1背包问题的求解也进行了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信